HERPETOZOA 9 (1/2): 31-56 Wien, 30. Juni 1996

Taxonomic revision of the Iberian 'Archaeolacertae' I.: A new interpretation of the geographical variation of *'Lacerta' monticola* BOULENGER, 1905 and *'Lacerta' cyreni* MÜLLER & HELLMICH, 1937 (Squamata: Sauria: Lacertidae)

Taxonomische Revision der iberischen 'Archaeolacertae' I.: Eine neue Interpretation der geographischen Variabilität von 'Lacerta' monticola BOULENGER, 1905 und 'Lacerta' cyreni MÜLLER & HELLMICH, 1937 (Squamata: Sauria: Lacertidae)

OSCAR J. ARRIBAS

KURZFASSUNG

Die vorliegende morphologische Arbeit analysiert die geographische Variabilität von 'Lacerta' monticola BOULENGER, 1905 und 'L.' cyreni MÜLLER & HELLMICH, 1937 mit Hilfe univariater und multivariater statistischer Verfahren. Die Stichproben von 'L.' monticola weisen eine weitgehende Überlappung der Variationsbereiche der entsprechenden Merkmalsausprägungen auf, doch läßt sich das Sample von S^a da Estrella ('L.' m. monticola BOULENGER, 1905) von der übrigen kantabrischen Stichprobe ('L.' m. cantabrica MER-TENS, 1929) abtrennen. 'L.' cyreni umfaßt mehrere allopatrische Populationen mit jeweils bedeutendem Differenzierungsgrad. Die Population von Gredos erscheint von den Guadarrama-Populationen ('L.' c. cyreni MÜLLER & HELLMICH, 1937) subspezifisch verschieden und die kleine bestandsgefährdete Population von Peña de Francia unterscheidet sich von den beiden erstgenannten bedeutend.

ABSTRACT

The present morphological study analyzes the geographical variation of 'Lacerta' monticola BOULEN-GER, 1905 and 'L.' cyreni MÜLLER & HELLMICH, 1937 by means of univariate and multivariate statistical analyses. 'L.' monticola shows a low degree of morphological interpopulation differentiation (considerable overlap of the ranges of respective character states). Yet, one sample (S^a da Estrella) is separable from the rest of the Cantabric samples. The first corresponds to 'L.' m. monticola BOULENGER, 1905, the second to 'L.' m. cantabrica MERTENS, 1929. 'L.' cyreni forms several allopatric populations which have reached a considerable degree of divergence. The populations of Gredos seem to be subspecifically distinct from the Guadarrama ones ('L.' c. cyreni MÜLLER & HELLMICH, 1937) and the small endangered Peña de Francia population is strongly different from both.

KEY WORDS

Lacertidae, 'Archaeolacerta', 'Lacerta' monticola, 'L.' cyreni, new subspecies, systematics, taxonomy, biogeography, Iberian Peninsula

INTRODUCTION

The original description of 'Lacerta' monticola (BOULENGER, 1905) has apparently been based on two adult specimens, and a young female from S^a da Estrella, and another young animal from 'Spain'. No individual was declared type. Later, in his monograph of the Lacertidae, BOULEN-GER (1920/21) designated specimens from both 'Spain' and 'Estrella' as types.

CYRÈN (1928) assigned the type locality of 'L.' monticola to 'S^a de Guadarrama' and described the S^a da Estrella populations as 'L.' estrellensis while MER-TENS & MÜLLER (1928) restricted BOU-LENGER's type localities of 'L.' monticola to 'S^a de Estrella' before describing 'L.' monticola cantabrica (MERTENS 1929).

The latter opinion prevailed despite MERTENS' paper of 1929 where he again mentioned 'Guadarrama' as type locality of this species. Later, MÜLLER & HELLMICH (1937) described 'L.' m. cyreni and synonymized 'L.' estrellensis with 'L.' monticola which both had been reported from the same locality.

32

Apart from the original description (BOULENGER, 1905), papers dealing with the North Spanish populations of 'L.' monticola have been usually very incomplete, being based on few specimens, small areas or mixed samples of more than one taxon.

In 'L.' monticola, maximum morphological variation can be expected in North Spanish specimens of the Picos de Europa Massif through the Cantabric Mountains up to the mountains of Galicia and Sanabria, with a number of recently discovered disjunctive coastal populations at sea level (GALAN 1982; ELVIRA & VIGAL 1982). 'L.' monticola also inhabits S^a da Estrella, where it is now isolated from the main area (fig. 1).

'L.' cyreni lives in the Spanish Sistema Central and forms several disjunctive populations, from east to west: S^a de Guadarrama (type locality of the species); Gredos (with several peripheral isolates in S^a de la Paramera, La Serrota, S^a de Bejar), and a more western relict population in the summit region (uppermost 100 m) of the Peña de Francia mountain (SALVADOR 1984; BARBADILLO 1987; LIZANA & al. 1993) (fig. 1).

'L'. cyreni, although closely related to 'L.' monticola (ODIERNA & al. in press; MAYER & ARRIBAS 1996) is different from the latter in pattern and coloration, karyotype and some genetic loci (see SALVADOR 1984; ARRIBAS 1993; PEREZ MELLADO & al. 1992 - for morphology of the two taxa; ODIERNA & al. 1994, 1996 in press - for karyology; and MAYER & ARRIBAS 1996 for genetics).

'L.' cyreni differs from 'L.' monticola in having a completely heterochromatinized W sex chromosome, except for a little intercalary euchromatic band. (all euchromatic in monticola), and NOR (nucleolar organizer) in a different chromosome and position (subtelomeric in a pair of small to medium sized chromosomes in 'L.' cyreni, and in the telomerical apex of a large pair of chromosomes in 'L.' monticola) (ODI-ERNA & al. 1994, 1995, in press). In particular, the NOR localization has proved to be of diagnostic value and relevance for phylogenetic studies in lacertids (ODIERNA & al. 1987). Likewise, starch gel electrophoresis found differences between the two taxa (two different out of 6 variable alleles, in West European 'Archaeolacertae' studied - MAYER & ARRIBAS 1996).

The aim of the present paper is to review the geographical variation of 'L.' monticola and 'L.' cyreni, starting from the assumption that they are closely related species (allospecies, sensu MAYR & ASH-LOCK 1991), and to pay special attention to the patterns of their geographical differentiation through the Iberian mountains. The uncertain systematic status of the lizards of the 'Archaeolacerta' type is indicated by placing the name Lacerta between quotation marks.

MATERIAL AND METHODS

Material

A total of 313 specimens (snout-vent length > 45 mm) were studied from the collections of the author (CA, University of Barcelona), PEDRO GALAN (CG, La Coruña), MANUEL MEUIDE (CM, Soria) and Estación Biológica de Doñana (EBD, Sevilla, Spain). Type specimens in CA, will be transferred to 'Centro Pirenaico de Ecologia (CSIC) after finishing the studies.

[S1]..[S1.5] = sample 1..sample 1.5.

'Lacerta' monticola BOULENGER, 1905

[S1] S^a da Estrella, Portugal (A Torre, Lagoa Comprida): 9 males, 15 females.

[S2] La Coruña, coastal localities, Spain (see GALAN 1982 for a detailed list): 14 males, 17 females.

[S3] Lugo, coastal localities, Spain (S. Xulian de Cabarcos, Insúa, S. Cosme de Barreiros): 18 males, 17 females.

[S4] Lugo, mountain localities, Spain (S^a de Caurel, Incio, Saá de Incio, Sta. Cruz de Incio, Hospital de Incio, Herreria de Incio, Trascastro de Incio): 19 males, 16 females.

[55] Sanabria - Truchillas area, Sierra de la Cabrera, Spain: 1 male.

[S6] West Cantabric Mountains, Spain (S^a de Ancares: Vilarello de Donis, Piornedo de Donis): 12 males, 3 females.

[S7] Central Cantabric Mountains, Spain (Somiedo area: Rebolleda, Villar de Vildas, Lago de la Cueva, Lagos de Calabazosa, Puerto de Somiedo): 29 males, 19 females.

[S8] East Cantabric Mountains, Spain (Puerto de Vegarada, Puerto de las Señales, Puerto de Tarna): 13 males, 19 females.

[S9] Picos de Europa Massif, Spain (Vega de Enol): 5 males, 8 females.

'Lacerta' cyreni MÜLLER & HELLMICH, 1937

[S1.2] S^a de la Peña de Francia, Spain: 1 male, 1 female.

[S1.3] S^a de Bejar, Spain: 1 male, 3 females.

[S1.4] S^a de Gredos, Spain (Plataforma de Gredos, Laguna Grande de Gredos, Portilla de los Machos and Puerto de Angosturas): 20 males, 36 females.

[S1.5] S^a de Guadarrama, Spain (Puerto de Navacerrada): 13 males, 21 females.

A more detailed list of specimens studied is available from the author.

For statistical analyses, samples from adjacent localities had to be pooled to achieve minimum sample size (five mensurable specimens of each sex). Pooling was done only in case of similar physiographic localities; individuals to be pooled were added to the population with the nearest centroid.

Thus, all coastal specimens were put in one sample. Female 'L.' monticola specimens from inland Lugo localities [S4] and West Cantabric mountains [S6] were pooled. Specimens of the Central Cantabric localities, and the three mountain passes from the East Cantabric Mountains were grouped into two samples (Central [S7] and East Cantabric Mts. [S8]). All samples are composed by specimens belonging to adjacent localities except for the coastal Coruña sample [S2] and the female sample from Ancares-Incio [S4+S5].

Characters studied

B i o m e t r y: Snout-vent length (SVL); forelimb length (FLL); hindlimb length (HLL); pileus length (PL); pileus width (PW); parietal scale length (PaL); masseteric scale diameter (ØM); tympanic scale diameter (ØT); anal scale width (AW); anal scale length (AL).

All linear measurements were made with digital callipers to the nearest 0.01 mm by the author to avoid inter observer variability.

True lengths were transformed into the non-dimensional ratios: FLL/SVL; HLL/SVL; PL/PW; ØM/PaL; ØT/PaL; AW/AL. All ratios are given multiplied by 100.

Pholidosis [Counts]: Supraciliar granulae - right and left side (GrSr, GrSl); gularia (GUL); collaria (COLL); dorsalia across mid-body (DORS); ventralia - transversal rows (VENT); femoralia rigth and left side (FEMr, FEMI); lamellae underneath 4th toe (LAM); circumanalia (CircA).

[Dichotomous characters]: Contact of rostral-internasal and postocular-parietal shields present (+) or not present (-).

Coloration: Dark punctuation on ventral scales (VP) present or not present.

Only specimens from which complete character sets were available were used in numerical analyses.

Statistical procedures

Statistical analyses performed in the present study are phenetic, based on relative similarity or dissimilarity of populations with many characters considered simultaneously without a priori weighing (JARDINE & SIBSON 1971; SNEATH & SOKAL 1973).

Descriptive statistics comprised arithmetic mean, standard deviation, coefficient of variation, maximum, and minimum. The sum of variation coefficients was used as an estimator of the intrinsic population variability.

Univariate statistics: A one-way (single classification) ANOVA was generated with NCSS (HINTZE 1991). ANOVA was carried out separately for males and females (SOKAL & ROHLF 1969). Where significant differences were found, a STUDENT-NEWMAN-KEULS test was run at p < 0.05 (significant) and SCHEFFÉ's test at p < 0.01 (highly significant) for multiple comparisons among means.

Multivariate analyses were done with the CANP program of the MULTICUA package (ARENAS & al. 1991). Canonical Variate Analysis (CVA) was performed to arrange the populations along orthogonal axes (Canonical Variates) with maximum discriminative power using MAHALANOBIS distances. Each population is represented by a centroid (a hypotethical middle individual) and a confidence region of 90%. CVA is an appropiate method for group representation based on metric variables, but can also be used in dichotomous and meristic data (MAXWELL 1961; CLA-RINGBOULD 1958; CUADRAS 1981).

rial and n siehe	max	77-77 15 15 15 15 15 15 15 15 15 15 15 15 15) max	64.9 111 111 111 112 123 123 123 123 123 123
see 'Mate	min	45.88 88 102 102 102 102 102 102 102 102 102 102	opa (n=: min	58.1 8 9 9 22 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25
viations (und Ab	(n=19) CV	0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Pic. Eur CV	0.02 0.11 0.11 0.02 0.02 0.02 0.02 0.02
er abbre	zo Mts. std	$\begin{array}{c} 7.7\\ 7.8\\ 7.8\\ 0.000\\ 0$	9] Enol, std	3.09 1.14 1.192 1.192 1.141
characte ale. Ziff	[S4] Lug mean	62.28 11.111	[S mean	60.92 9.4 9.8 10.6 17.6 17.6 17.6 26.8 36.48 36.13 36.13 36.13 36.13 36.13 36.13 36.13
bers and Merkmu faximum	max	71.4 13.33 23.74 23.55 23.74 23.33 23.74 23.33 23.74 23.33 23.74 23.33 23.74 23.33 23.74 23.33 23.74 23.56 (14/4) (14/4)	= 13) max	68.4 11 11 11 11 11 11 11 11 11 11 11 11 11
ple numl Jotischer max - N	(n=18) min	50 7 7 7 7 7 7 7 8 8 8 8 8 8 9 3 2 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9	. Mts (n: min	47 6 6 116 116 116 116 116 116 116 116 11
For sam imum). Id pholic inimum,	, Coast (CV	0.17 0.17 0.18 0.113 0.103 0.004 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.114 0.0145 0.005 0.	E. Cant CV	0.09 0.15 0.15 0.07 0.00 0.00 0.00 0.02 0.03 0.02 0.03 0.03
aracters. ax - max scher ur min - M	3] Lugo std	6.53 1.69 1.87 1.87 1.81 1.81 1.81 1.83 0.02 0.02 0.02 0.02 0.05 0.02 0.05 0.05	egarada, std	5.32 1.2 1.79 1.79 1.79 1.79 0.01 0.07 0.06 0.06 0.06 0.00 0.00 0.00 0.00
dosis cha mum, ma biometri ffizient,	[S mean	61.05 9.94 9.94 10.33 11.04 19.22 19.23 5.716 5.7175 5.7175 5.7175 5.7175 5.7175 5.7175 5.7175 5.7175 5.7175 5.7175 5.7175 5.7175 5.7175 5.7175 5.7175 5.71755 5.7175555555555	[S8] V mean	58.37 9.2 9.2 9.2 9.2 9.2 5.2 117.2 117.2 117.2 5.1 117.2 5.1 117.2 5.1 2 5.1 2 5.1 2 5.1 2 5.1 2 5.1 2 5.1 2 5.1 2 5.1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
nd pholi in - mini iabilität ationskoe	l4) max	72.03 15 15 15 15 13 13 13 23 23 23 23 23 23 23 23 23 23 23 23 23	1=29) max	71.8 13 13 13 13 14 19 19 19 19 19 19 19 19 19 19 19 19 19
biometric a ariation, m an zur Vai CV - Vari	Coast (n= min	45.81 65.81 15 15 15 15 15 15 15 201.76 47.38 63 201.76 47.38 41.29 41.29	ant. Mts (i min	47.6 20 20 20 20 20 21 20 21 20 21 20 21 20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20
port of l ient of v Statistike sichung,	Coruña, e CV	0.12 0.12 0.13 0.14 0.15 0.16 0.16 0.16 0.16 0.16 0.17 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	လ လို့ပ် မို	0.09 0.16 0.16 0.01 0.01 0.00 0.00 0.02 0.02 0.02 0.02
istical re coeffici nchen. ardabwe	s2] La C std	$\begin{array}{c} 7.62\\ 2.23\\ 2.256\\ 2.25$] Somie std	5.67 1.46 1.87 1.87 1.87 1.14 1.15 1.14 1.15 1.14 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.0
les. Stat on, CV - on Män	mean	61.13 10.073 10.355 10.	[S7 mean	60.76 9.55 9.55 9.72 9.72 9.72 10.42 17.41
es of ma deviatio roben v littel, std	max	71.1 13.1 13.1 13.1 12.2 25.2 25.2 25.2 25.2 25.2 25.2 25	(n=12) max	69.96 115 127 13 13 13 23 23 30.8 8 33.38 33.38 8 23 199 (8/4) (1/11)
cht sample - standard cht Stichp ttisches M	(n=9) min	49.5 9 9 16 16 19 19 19 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Cant. Mts min	51.97 7 7 115 115 115 115 115 115 114 155 114 155 114 155 115 11
<i>ola</i> - eig an, std <i>ola</i> - ac arithme	Estrella CV	0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00	es, W. o CV	$\begin{array}{c} 0.07\\ 0.24\\ 0.02\\ 0.03\\$
' montic netic me ' montic (mean -	[S1]] std	7.36 1.11 1.23 1.58 1.58 0.332 0.332 0.332 0.11 1.42 1.42 1.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Ancar std	4.57 2.19 2.19 2.19 1.199 1.191 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04
'Lacerta 111 - arithi 'Lacerta Aethods'.	mean	65.41 10.66 10.44 24 52.44 26.88 19 24.55 35.94 214.72 35.14 55 54.13 35.14 34.13 35.14 34.13 35.14 34.13 35.14 34.13 35.14 35.13 34.13 35.14 35.13 35.14 35.13 35.14 35.13 35.14 35.13 35.14 35.13 35.14 35.13 35.14 35.17 35.14 35.17 35.14 35.14 35.14 35.14 35.17 35.14 35.17 35.14 35.14 35.17 35.14 35.17 35.14 35.17 35.14 35.14 35	[S6] S mean	64.76 10.91 10.66 11.3 54.33 26 17.166 17.166 35.43 36.75 7.166 35.43 34.77 54.49 34.77 54.49 34.77 54.49 34.77 54.49 34.77 54.49 34.77 54.49 34.77 54.49 34.77 54.49 54.49 54.40 56.40 17.16 56.75 17.16 56.75 17.16 56.75 17.16 56.75 17.16 56.75 17.16 56.75 17.16 56.75 17.16 56.75 17.16 56.75 17.16 17.17 17.16 17.16 17.16 17.17 17.16 17.17 17.16 17.17 17.16 17.17 17.16 17.17 17.16 17.17 17.16 17.17 17.16 17.17 17.16 17.17 17.16 17.17 17.16 17.16 17.17 17.16 17.17 17.16 17.17 17
Table 1: Methods'. (me Tab. 1: 'Material and N	Character Merkmal	SVL GrSt GrSt GrSt GUL COLL COLL DORS VENT FEMT FEMT FEMT FLA 100/SVL HLL+100/SVL HLL+100/SVL PL*100/SVL PL*100/SVL ROSTAI-Internas Rostral-Internas Rostral-Internas	Character Merkmal	SVL GrSI GrSI GUL COLL DORS VENT FEMI FEMI LAM COLL DORS VENT FEMI LAM COLL DORS VENT FLL+100/SVL HLL+100/SVL HLL+100/SVL AW/PaL AW/PaL AW/AL AWAL AW

Table 2: 'Lacerta' monticola - seven samples of females. Statistical report of biometric and pholidosis characters. For sample numbers and character abbreviations see 'Material and Methods'. (mean - arithmetic mean, std - standard deviation, CV - coefficient of variation, min - minimum, max - maximum).

Cluster analysis: Phenetic distances between population centroids are represented numerically by squared MAHA-LANOBIS distances (D^2) . Their values were used for calculation of the phenograms. The closer two populations appear in the

branching sequence, the closer are their population centroids in the hyperespace (the smaller is D^2). For cluster aggregation in the phenogram representation, UPGMA was used (ROHLF 1962; SNEATH & SOKAL 1973).

RESULTS

Descriptive and univariate statistics

'L.' monticola, males (table 3)

For descriptive statistics see table 1. Concerning the biometric variables, there is almost no difference between samples, except for anal plate shape between La Coruña [S2] and Lugo Mts. [S4] (p < 0.01), and relative pileus width between West Cantabric Mts. [S6] and East Cantabric Mts. [S8] (p < 0.05).

There are some differences in pholidosis among populations, but usually scattered and without clear pattern of variation. Significant differences are more frequently found between the geographically distant samples, due to the more extreme values of their character states. As to the number of dorsalia, the sample of Picos de Europa [S9] differs significantly from all other samples, and highly significant from all Galicia and West Cantabric ones [S5 -S9]. Interestingly, the S^a da Estrella sample [S1] shows only five significant differences to all others, while these other samples differ from each other by 4 to 14 significant and/or highly significant diferences revealing more differentiation than the sample of the nominate subspecies of the type locality.

'L.' monticola, females (table 4)

For descriptive statistics see table 2. There are differences between samples in

Multivariate statistics

'L.' monticola, males (fig. 2 - top, tables 7 and 8)

The first two canonical axes account for 59.5 % of the samples' total variance.

The main characters that load on the first axis are number of dorsalia (negative), and VP (dark punctuation on ventral scales) the number of dorsalia, with maximum values in Galicia [S1-S4] decreasing along the Cantabric Mts. range towards the east [S5-S9]. Some character states (numbers of ventralia, femoralia, lamellae underneath 4th toe, shape of pileus) show numerical differences between the geographically most distant samples, but without clear pattern of variation.

'L.' cyreni (males and females)

Descriptive statistics and t-test results are shown in tables 5 and 6 for males and females respectively.

As only two sufficiently large samples were available (S^a de Gredos [S1.4] and S^a de Guadarrama [S1.5]), only these two are compared, leaving the allocation of the the samples of Bejar and Peña de Francia to the multivariate representation.

Both males and females of S^a de Guadarrama and S^a de Gredos show highly significant differences in the numbers of ventralia (Gredos > Guadarrama) and circumanalia (Guadarrama > Gredos), females also in dorsalia and gularia (Gredos > Guadarrama). Females are significantly different in the number of left side supraciliar granulae, relative hindlimb length and relative masseteric size, whereas males differ highly significant in this last character.

(positive). Less important are the loadings for number of collaria and rostral-internasal contact (negative), masseteric diameter and number of circumanalia (positive).

There is a discrete separation of the S^a de Estrella [S1] and Picos de Europa [S9] samples (both in the positive part of the first axis) from the main group of

Galicia and Cantabric populations (in the negative part of the axis). The considerable overlap in these latter indicates little differentiation between samples.

The second axis has important loadings for the numbers of dorsalia and femoralia (negative) and for rostral-internasal contact (positive). One can see a gradual change from Estrella [S1] to Picos de Europa [S9] which are the geographically most distant populations (fig. 1). Centroid coordinates and confidence radius are indicated in table 8.

L. ' monticola, females (fig. 2 - bottom, tables 7 and 8)

The first two canonical axes account for 63.3 % of the samples' total variance. The principal positive loadings on the first axis come from postocular-parietal contact and VP, the negative from number of dorsalia and rigth femoralia, and - less important - shape of pileus. The first axis shows a considerable overlap of samples.

The positive loadings of the second axis are high for rostral-internasal contact and - less important - for number of lamellae underneath 4th toe and collaria. Negative loadings are caused by VP and masseteric diameter. The second axis shows a slight separation of the Estrella sample [S1] in the negative part from the main group of Cantabric samples. Centroid coordinates and confidence radius are given in table 8.

'L.' cyreni, males (fig. 3 - top, tables 8 and 9)

For better understanding the systematic relationship of the 'Archaeolacertae' along the Iberian Sistema Central, Estrella populations of 'L.' monticola [S1] have been included in the analyses of 'L.' cyreni. The Peña de Francia [S1.2] and Bejar [S1.3] specimens are represented by their centroids only.

The first two canonical axes allow for total discrimination of all samples (100 % of the samples' total variance is explained). The main loadings for this first axis come from number of ventralia and VP (positive) and rostral-internasal contact (negative). This axis separates Estrella [S1] specimens ('L.' monticola) in the positive part (associated with high values for number of ventralia and VP) from 'L.' cyreni populations [S1.2 - S1.5] (usually with rostral-internasal contact, low values for number of ventralia and VP) in the negative part.

The second axis discriminates the samples of Gredos [S1.4] and Guadarrama [S1.5] without overlap. The main discriminant characters are number of ventralia (positive) and circumanalia (negative).

The single Peña de Francia specimen [S1.2] appears separated from the rest, somewhat displaced towards 'L.' monticola [S1], which is due to the lack of rostralinternasal contact in the specimen. According to its geographic position, the Bejar specimen [S1.3] appears very close to the Gredos [S1.4] sample.

> 'L.' cyreni, females (fig. 3 - bottom, tables 8 and 9)

The first two canonical axes represent 81 % of the samples' total variance. The first axis receives a high loading from rostral-internasal contact (positive), less important from number of ventralia (negative) and a negative loading from VP. This axis separates 'L'. monticola of Estrella [S1] from all samples of 'L.' cyreni.

The second axis discriminates the samples of Guadarrama [S1.5] and Gredos [S1.4] without overlap of the 90% confidence regions. The characters which contribute most are number of dorsalia and gularia (both highly positive). The Bejar specimens' [S1.3] centroid appears close to the Guadarrama sample [S1.5] which is in conflict with the result of the analysis of males. The Peña de Francia specimen [S1.2] appears intermediate and without overlap between the two main 'L.' cyreni samples.

Cluster analysis (fig. 4, table 10)

Cluster analyses of male as well as female 'L.' monticola (fig. 4) show that populations differ considerably although

there is a marked overlap in character states. The morphologically most different populations are the geographically most

Table 3: 'Lace	inta' mont	i <i>cola</i> , male	SS. AN	OVA 1	report	and p	airwis	t com	Darison	n of sa	Imples	1 thr	5 ygnc	. For	samp	le nur	nbers	and c	haract	er abb	reviat	ions s	ee 'M	aterial	and l	Meth-
ods'. Tab3: ' <i>Lacert</i> a * - sign	1' <i>montico</i> ificant/sig.	<i>la</i> , Männel nifikant (p	hen. A < 0.0	NOVA 5), +	- F- ui + - his	nd p-V is yldy	Verte s gnifica	nt/ho	aarwe h sigr	tiser V ufikan	/erglei 11 (p <	ch der 0.01	Stich	probei	a 1 bis	9. Zi	ffernc	ode u	qA bu	kürzu	ngen s	iehe '	Mater	ial and	Meth	ods'.
Character/Merkmal	н	4	1-2 1	3 1-	4	1-1	1-8	1-9 2	-3 2-	4 2-6	5 2-7	2-8	2-9 3	4	φ	7 3-8	3-9	4	4-7	84	-9 6-	7 6-	8 6-9	7-8	6-L	6-8
SVL GrSr GrSr GUL COLL DORS VENT FEM DORS VENT FEM FEM FEM FEM FEM FEM FEM FEM FEM FEM	1.6 2.07 2.07 2.09 1.38 3.395 3.395 3.395 3.395 3.395 3.395 3.395 3.395 3.395 3.395 3.395 3.395 3.395 3.5655 3.565 3.5655 3.5655 3.5655 3.56555 3.56555 3.565555555555	$\begin{array}{c} 0.143\\ -0.013\\ 0.052\\ 0.052\\ 0.086\\ 0.214\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.004\\ 0.014\\ 0.001\\ 0.001\\ 0.001\end{array}$	· ·		•	. •	•	••	· · · ·		* *	• •	:		* *	****	* •		:				•	· · · · ·		
Table 4: 'Lace ods'. Tab 4: 'Lacert * - sign	erta' mont a' montice ificant/sig	<i>icola</i> , fem <i>əla</i> , Weibc nifikant (p	ales. A hen. A < 0.0	NOV/ NOVA	A repo (F, J - hig	ort and) sow ;thly si	l pairw ie paa	vise cc rweise ant/hoo	mpari r Verg :h sigr	son of leich (lifikan	samp der Sti tt (p <	les 1- chpro	4 and ben 1)	6-9. - 4 un	Sampl d 6 - 9	e nun). Ziff	ibers emco	and cl de uno	laracté i Abki	er abb îrzung	reviati gen sie	ions s the 'N	ee 'M lateria	aterial l and]	and l Metho	Meth- ds'.
Character/Merkmal	щ	م	1-2	1-3	1	1-7	1-8	1-9	2-3	24	2-7	2-8	2-9	34	3-7	3-8	3-9	4-7	4	4	7-8	2-9	8-6	۱.		
SVL Grsf Grsf Grsf Grsf Grsf Grsf Grsf Grsf	2.28 4.16 1.96	0.0421 0.0009 0.0013 0.0789											•			+	•	**	::	•				1		
COLL DORS VENT	3.12 11.05 2.63	0.021		٠		+	•	• •	• •		:	•	• •	٠	:+	: •	• ‡ •	:	٠	• •						
FEMI FEMI LAM	3.87 1.37 4.52	0.0017 0.2328 0.0005			٠														•		•	•				
CircA FLL+100/SVL HLL+100/SVL PL+100/PW	3.3 1.15 1.93 6.1	0.0054 0.3404 0.0837 0				:	*								•	•		:	٠							
ØM/PaL ØT/PaL AW/AL	3.41 1.25 1.97	0.0043 0.2888 0.0768									:															

Ŧ.
Hel
Ð
ar
rial
ate
Ż,
B
3
2
Ĩ
Ъ,
ē
ĩ
s.]
en
gui
Ē
kü
At
÷
SI.
r P
nn
S
SI.
ģ
\$
ich
ē
5
'ergl
it Vergl
Test Vergl
l t-Test Vergl
und t-Test Vergl
e) und t-Test Vergl
lose) und t-Test Vergl
olidose) und t-Test Vergl
Pholidose) und t-Test Vergl
ie, Pholidose) und t-Test Vergl
etrie, Pholidose) und t-Test Vergl
ometrie, Pholidose) und t-Test Vergl
(Biometrie, Pholidose) und t-Test Vergl
en (Biometrie, Pholidose) und t-Test Vergl
tiken (Biometrie, Pholidose) und t-Test Vergl
atistiken (Biometrie, Pholidose) und t-Test Vergl
Statistiken (Biometrie, Pholidose) und t-Test Vergl
en. Statistiken (Biometrie, Pholidose) und t-Test Vergl
chen. Statistiken (Biometrie, Pholidose) und t-Test Vergl
innchen. Statistiken (Biometrie, Pholidose) und t-Test Vergl
Männchen. Statistiken (Biometrie, Pholidose) und t-Test Vergl
ni, Männchen. Statistiken (Biometrie, Pholidose) und t-Test Vergl
reni, Männchen. Statistiken (Biometrie, Pholidose) und t-Test Vergl
' cyreni, Männchen. Statistiken (Biometrie, Pholidose) und t-Test Vergl
rta' cyreni, Männchen. Statistiken (Biometrie, Pholidose) und t-Test Vergl
tcerta' cyreni, Männchen. Statistiken (Biometrie, Pholidose) und t-Test Vergl
'Lacerta' cyreni, Männchen. Statistiken (Biometrie, Pholidose) und t-Test Vergl
5: 'Lacerta' cyreni, Männchen. Statistiken (Biometrie, Pholidose) und t-Test Vergl
ab 5: 'Lacerra' cyreni, Männchen. Statistiken (Biometrie, Pholidose) und t-Test Vergl

Table 5: 'Lacerta' cyreni, Tab 5: 'Lacerta' cyreni, M	males. Stati lännchen. St	stics (biom tatistiken (]	tetry, pholic Biometrie, l	losis) and t- Pholidose) u	test compared to the test of test	rison of [S1 regleich vo	.5] and [S] w [S1.5] w	.4]. For at nd [S1.4].	breviations Abkürzunge	see table 1 n s. Legeno	legend and de Tab. 1 u	f 'Material and 'Materi	and Methods'. al and Methods'.
Character / Merkmal	mean	[S1.5] (std	Guadarrama CV	1 (n=13) min	max	mean	[S1.4 std) Gredos (1 CV	1=20) min	max	ц.	י. מ	** - p < 0.01
SVL	61.07	9.18	0.15	45.1	70.80	66.22	7.10	0.10	49.90	72.88	1.81	0.07	
GrSr	10.30	2.05	0.19	9	13	10.90	3.05	0.28	9	13	0.61	0.54	
GrSI	10.23	1.58	0.15	œ	13	10.55	2.32	0.22	1	16	0.43	0.66	
GUL	24.23	1.73	0.07	21	27	25.35	2.10	0.08	23	31	1.59	0.12	
COLL	10.61	0.87	0.08	6	12	10.85	1.30	0.12	7	13	0.56	0.57	
DORS	49.92	2.36	0.04	45	53	51.30	3.55	0.06	4	57	1.22	0.22	
VENT	24.61	1.12	0.04	23	26	26.10	1.20	0.04	24	29	3.54	0.0013	:
FEMr	19.15	1.28	0.06	17	21	18.30	1.65	0.09	15	22	1.57	0.12	
FEMI	18.84	1.40	0.07	16	21	18.15	1.59	0.08	16	22	1.28	0.21	
LAM	25.38	1.38	0.05	22	27	25.35	1.84	0.07	21	28	0.05	0.95	
CircA	8.46	1.19	0.14		12	6.47	0.84	0.13	łv	¦∝	5.52	c	:
ET I #100/SVI	36 88	200	100	345	30.01	35 58	0.00	000	20.22	47.37	1 41	0.16	
	00.02				27.02		30		11.11	0.12		04.0	
	74.00	70.0	20.0				70.0	5		20.00		70.0	
PL-100/PW	7/.017	0.11	co.o	194.09	40.167	60.212	77.0	0.10	01.021	10.022		4C.0	;
ØM/PaL	36.17	0.03	0.11	30.90	43.75	42.66	0.05	0.13	32.30	53.84	3.59	0.0011	:
ØT/PaL	36.01	0.06	0.19	21.81	48.83	36.37	0.05	0.16	27.40	49.18	0.16	0.87	
AW/AL	55.89	0.06	0.11	45.83	66.66	58.04	0.0	0.15	40.81	81.48	0.74	0.46	
Postral-Internasal contact (+/-)					14/00					11/00/			
Postocular-Parietal contact (+/-)					(2/12)				·	(2/18)			
Table 6: 'Lacena' cyreni,	females. Sta	tistics (bio	metry, pho	lidosis) and	t-test comp	arison of [5	31.5] and [3	51.4]. For	abbreviation	is see table	1 legend a	nd 'Materia	I and Methods'.
1 BD 0: Lacena cyreni, W	elocnen. Su	atistiken (1	siometrie, i	n (asopijou.	v isə I -i pu	ergieicn vo	un (c·1<) u	a (51.4). /	ADKULZUNGEI	n s. Legeno	le 180. 1 u	na Malen	ll and Memods.
Character / Merkmal		(S1.5) (Juadarrama	(n=21)			[S1.4] Gredos (1	1=36)				-p < 0.05
	mean	std	2 C	min	тах	mean	std	2C	min	max	T	٩	** - p < 0.01
SVL	66.3	8.7	0.13	49.4	2.97	65:07	5.69	0.08	49.4	73.6	0.64	0.52	
	9	1 18	110	0	2	10.96	20.6	010	~	17	1 3	80.0	
19-0	0.04			. .	12	11 12	200	1.0	. •	1	200	850	4
	10.7	100.1	01.0	• ;	25		00.7	۹ د	٦ĉ	22	00.4	10.00	
GUL	C2.67	50.7 7	0.08	2,	17	71.07	90.7	0.1 0	77		79.7	0.000	:
COLL	10.01	(<u>5.</u>]	0.12	×	4	10.5	0.1	0.1	רכ	<u>.</u>	0.30	0./1	
DORS	48.28	3.4	0.07	43	54	52.25	2.97	0.05	47	59	4.6	0	:
VENT	27.66	1.01	0.03	25	29	29	1.23	0.04	26	31	4.16	0.0001	:
FEMr	18.23	1.94	0.1	14	21	17.97	1.78	0.0	15	22	0.52	0.6	
FEMI	17.85	1.98	0.11	15	22	17.94	1.41	0.07	15	20	0.19	0.84	-
I.AM	24.19	1.77	0.07	10	LC	74 61	1 87	0.07	20	50	0.84	04	
CircA	8 5 5	0.68	0.08	¦ œ	;2	717	1 07	0.14	٩v	ì٥	\$ 17	ç	:
ET 1 +100/SVT	33.00	000	0.05	20.74	36.45	32 76	200	0.08	70.87	30,68		ۍ د ج	
HI I +100/SVI	45.22	10.0		401		01.00	20.0		10.77	20.02	2 40	2100	•
DI #100/DNV	22.000	200	2000	104 22	200.68	11 60	210		10.10	22.20		0.28	
	20 07	8		77.441	00.044	40.1			1.701	C1.1C7)	5.0	•
	24.70	0.00	07.0	30.66		1.04	38			16.02	, - , - , -	10.0	
	24.72	20.0		CC.05	11.14	60.75	60.0	67.0	37.75	06.94	0.00	17.0	
Destant Internecel contact (±/)	07.00	CO.O	60.0			1.10	8.0	1.0	C7.1C	(1.00 (1.00	0.07	10.0	
ROSITAI-LINGTIASAI CUINACI (777-) Destarilar-Darietal contact (4/-)					(2101)					(90/11) (90/11)			
Postocular-Parietal contact (+/-)					0/14 0					(11/20)			

•

distant ones (S^a Estrella and Picos de Europa). In the latter population, however, this distant position might have been overestimated because of small sample size. MAHALANOBIS distances between samples of identical taxa from the same locality increased progressively when sample size was reduced, feigning considerable morphological distances between identical taxa. The same effect could have led to the sample's response to ANOVA and CVA.

Only two 'L.' cyreni populations (Gredos and Guadarrama) of the Spanish Sistema Central are sufficiently represented in this analysis. For comparative purposes, MAHALANOBIS distances are given for all four samples studied and against 'L.' monticola from S^a de Estrella (table 10).

The great differences between allopatric samples of the Sistema Central are due to a categorical discrepancy in the character states of VP (ventral punctuation) and rostral-internasal contact that show divergent values in 'L.' cyreni and 'L.' monticola in this area. In 'L.' cyreni, the Bejar female sample appears close to the Guadarrama centroid, but small sample size and poor state of the Bejar specimens prevented from considering the full character set. I would prefer to cluster 'L.' cyreni from Bejar with their neighbous from Gredos (S^a de Bejar is actually the westermost part of the Gredos Massif), but its status remains still uncertain.

DISCUSSION

As one can see from the statistical results, the mode of geographical variation is different in the two species.

In L. monticola, there is comparatively great morphological variability at both species and population level. This is expressed by considerable overlap of the confidence regions in the samples studied. Only the two geographically most distant samples deviate slighty from this pattern: (1) S^a de Estrella (representing 'L.' monticola monticola BOULENGER, 1905) and (2) Picos de Europa. The degree of differentiation in the Picos de Europa sample might have been overestimated because of small sample size. The sample of Estrella is not well defined by ANOVA, but appears as the only well differenciated one in the Canonical Variate Analysis due to the introduction of dichotomous characters (rostral-internasal and postocular-parietal scale contact). The Estrella sample differs from all Cantabric samples by the pattern of variation of the above characters. The Cantabric samples represent a non-homogeneous group (with considerable intrapopulation variation, and some characters showing clinal variation - e. g., dorsalia), which can be assigned to the subspecies 'L. ' monticola cantabrica MERTENS, 1929.

'L.' monticola might have originated in the Northwest of the Iberian Peninsula (Galicia and adjacent regions). In this mild and humid area of more or less stable climate conditions since the Tertiary, many relict forms have survived until now, including *Chioglossa lusitanica* and *Podarcis bocagei*. The former inhabits an area totally congruent to that of 'L.' monticola.

The overall variation in 'L.' monticola, as reflected by the Mean Variation Coefficient (MCV), is greater in the western and central samples (Estrella: 1.62; La Coruña: 1.90, Lugo coast: 1.57, Lugo Mts., West Cantabric Mts.: 1.71; Central Cantabric Mts.: 1.8) as compared to the easternmost samples (East Cantabric Mts.: 1.46: Picos de Europa: 1.34).

Rostral-internasal scale contact is largely absent in the Estrella sample but is frequently present in all others (except in the Central Cantabric Mts. sample, where there is just a slight predominance of contact). The absence of supraocular-parietal contact predominates in all populations except in those of the East Cantabric Mts. and Picos de Europa.

There is no doubt that 'L.' monticola and 'L.' cyreni are closely related species. Their differentiation from a common ancestor could have started during a Pleistocene interglacial period, by leaving an isolated southern population in the fresh and humid highland refuge of the Sistema Central mountains, whereas other populations survived in the Nortwest of the Iberian Peninsula. The former might have given rise to 'L.' cyreni, the latter to 'L.' monticola. After the end of the Würm

40

Table 7: 'Lacerta' monticola. Observable variables (characters) and their first two canonical variates (V1, V2) in males and females. For character abbreviations see 'Material and Methods'.

Tab. 7: 'Lacerta' monticola. Die beobachteten Variablen (Merkmale) und ihre ersten beiden kanonischen Variablen (V1, V2) bei Männchen und Weibchen. Abkürzungen der Merkmale siehe 'Material and Methods'. Table 9: 'Lacerta' cyreni. Observable variables (characters) and their first two canonical variates (V1, V2) in males and females. For character abbreviations see 'Material and Methods'.

Tab 9: 'Lacerta' cyreni. Die beobachteten Variablen (Merkmale) und ihre ersten beiden kanonischen Variablen (V1, V2) bei Männchen und Weibchen. Abkürzungen der Merkmale siehe 'Material and Methods'.

Character/Merkmal	Ma Männ	les ichen	Ferr Weib	uales ochen	Character/Merkmal	Ma Männ	les chen	Fem Weib	ales chen
Eigenvalue	11.6	10.5	17.3	8.46	Eigenvalue	60,9	7,97	17,3	5,63
Cumulative %	31.3	59.5	42.5	63.3	Cumulative %	88,4	100	61,2	81,1
	V 1	V2	VI	V2		VÍ	V 2	vi	V2
GrSr	0.011	-0.246	-0.152	0.012	GrSr	-0.003	-0.082	-0.020	0.186
GrSl	-0.004	-0.173	-0.141	0.110	GrSl	-0.003	-0.033	0.095	0.206
GUL	-0.065	-0.059	-0.054	0.152	GUL	-0.043	-0.113	0.129	0.320
COLL	-0.226	-0.025	0.132	0.269	COLL	-0.066	-0.003	0.131	0.109
DORS	-0.436	-0.590	-0.490	-0.080	DORS	0.061	-0.118	-0.156	0.406
VENT	0.154	-0.103	-0.117	-0.259	VENT	0.141	-0.447	-0.221	0.108
FEMr	0.050	-0.430	-0.329	-0.108	FEMr	0.023	0.103	0.141	-0.015
FEMI	0.047	-0.294	-0.152	0.088	FEMI	0.032	0.067	0.191	0.026
LAM	-0.020	-0.051	-0.044	0.294	LAM	-0.050	0.040	0.039	-0.032
CircA	0.258	0.061	0.164	0.021	CircA	-0.027	0.481	0.120	-0.174
RostInternas. cont.	-0.285	0.461	-0.118	0.613	RostInternas. cont.	-0.466	0.210	0.419	0.206
PostocPariet. cont.	0.104	0.238	0.312	0.080	PostocPariet. cont.	-0.008	0.002	-0.060	0.038
VP (present or not)	0.475	0.001	0.381	-0.380	VP (present or not)	0.282	0.221	-0.455	-0.173
FLL*100/SVL	0.120	0.140	0.044	-0.106	FLL*100/SVL	-0.016	0.045	0.037	0.153
HLL+100/SVL	-0.120	0.007	0.041	0.073	HLL*100/SVL	0.001	0.001	-0.025	0.052
PL+100/PW	0.183	-0.093	-0.269	-0.126	PL+100/PW	0.002	0.056	0.037	-0.028
ØM/PaL	0.243	0.159	0.041	-0.208	ØM/PaL	0.024	-0.235	-0.053	0.100
ØT/PaL	0.077	0.071	0.068	-0.062	ØT/PaL	0.001	-0.009	-0.018	-0.097
AW/AL	-0.109	0.118	-0.040	0.097	AW/AL	-0.067	-0.095	-0.015	0.041

Table 8: 'Lacerta' monticola and 'Lacerta' cyreni. Canonical coordinates of the centroid (V1, V2) and radius of 90 % confidential region (Rad) of the samples analyzed.

Tab 8: 'Lacerta' monticola und 'Lacerta' cyreni. Kanonische Koordinaten des Zentroids (V1, V2) und Radius des 90 % Vertrauensbereiches (Rad) der untersuchten Stichproben.

Sample / Stichprobe	Mal	es / Männe	chen	Fema	ales / Weit	ochen
L.' monticola	V1	V2	Rad	V 1	V 2	Rad
 [S1] Estrella [S2] Coruña [S3] Lugo Coast (Cabarcos) [S4] Lugo Mountains (Incio) [S5] Sanabria (Truchillas) [S6] West Cantabric Mts. (Ancares) [S7] Central Cantabric Mts. (Somiedo) [S8] East Cantabric Mts. (Vegarada, Señales) [S9] Picos de Europa 	2.13 -0.69 -1.13 -0.945 -1.27 0.086 -0.181 -1.07 1.8	-1.77 0.381 -1 -0.234 -0.807 -0.885 0.61 0.817 2.08	1.94 1.5 1.37 1.24 - 1.68 1.12 1.5 2.61	0.026 -0.677 -2.3 -1.66 - - 1.28 0.762 2.56	-2.43 1.23 -0.325 0.796 - - 0.02 0.207 0.501	1.54 1.45 2.25 1.37 - 1.37 1.37 2.11
[S1] Estrella ('L.' monticola) [S1.2] Peña de Francia [S1.3] Bejar [S1.4] Gredos [S1.5] Guadarrama	6.32 -0.301 -5.97 -3.86 -2.46	-0.292 -2.96 -1.6 -1.83 2.13	2.5 - 1.64 2.01	-3.55 1.54 0.762 1.07 1.72	-1.52 0.523 -0.472 1.92 -1.3	1.71 - 1.1 1.43

42

Table 10: Squared MAHALANOBIS distances between the studied samples in 'Lacerta' monticola and 'L'. cyreni, respectively. Values of males above, values of females below diagonal.

Tab. 10: Quadrate der MAHALANOBIS-Distanzen zwischen den untersuchten Stichproben bei 'Lacerta' monticola bzw. 'L'. cyreni. Werte für Männchen oberhalb, für Weibchen unterhalb der Diagonale).

'L.' monticola	[S1] Estrella	[S2] Coruña	[S3] Lugo Coast	[S4] Lugo Mts.	[S6] W Cant Mts.	[S7] C.Cant Mts.	[S8] E.Cant Mts.	[S9] Pic. Europa
 [S1] Estrella [S2] Coruña [S3] Lugo Coast (Cabarcos) [S4] Lugo Mountains (Incio) [S6] W Cantabric Mts. (Ancares) [S7] Centr. Cantabric Mts. (Somiedo) [S8] E Cantabric Mts. (Vegarada, Señales) [S9] Picos de Europa 	0 14.9 14.6 14.7 11.7 12.9 18	16.6 0 11.5 5.75 - 10.1 9.72 16.6	13.8 4.68 0 7.62 	14.8 4.34 3.84 0 - 14.1 13 21.2	9.85 8.58 7.87 5.13 0 - -	12.6 7.74 8.19 7.15 7.06 0 5.31 10.6	18.9 10.8 10.9 8.03 10.4 3.04 0 12.7	17.1 11.1 19 13.9 14.9 10.7 16.5 0
'L.' cyreni	[S1] Estrella	[S1.2] Francia	[S1.3] Bejar	[S1.4] Gredos	[S1.5] Guadar- rama			
 [S1] Estrella (L. monticola) [S1.2] Peña de Francia [S1.3] Bejar [S1.4] Gredos [S1.5] Guadarrama 	0 40.9 23.6 25.7 30	104 0 17.1 16.8 20.3	185 82.7 0 11 11.3	106 66.7 37.1 0 11.5	83 83.3 58.8 17.6 0			

glacial period, the general temperature rise (displacement of vegetation belts in the mountains) could have caused the present isolation of 'L.' cyreni populations. However, the morphological differentiation of the populations of Gredos, Guadarrama and Peña de Francia has reached subspecific level. The small population of Peña de Francia, despite being undoubtedly 'L.' cyreni by its color pattern in adults and hatchlings, shows a set of character states which is similar to that of 'L.' monticola (frequent lack of rostral-supranasal contact, presence of blue ocelli). Maybe the Peña de Francia individuals represent descendants of an ancestral intermediate form from prior to differentiation of 'L.' cyreni and 'L.' monticola. However, its cyreni-like colour pattern and its small population size presumably connected with high founder effect and genetic drift, fits better to the assumption of a 'conservative' form of 'L.' cyreni. This form might resemble the ancestor of the species, and may have some characters developed which are now typical to 'L.' monticola. The sanctuary of the Peña de Francia individuals is restricted to the top of a very pointed and stepped mountain. This situation increases the threat of negative anthropogenic influence on this small relict population. In Gredos and Guadarrama samples, lack of rostral-internasal contact and presence of blue occelli is exceptional (but see GARCÍA-PARIS & al. 1989: fig 66).

Between samples of 'L.' cyreni, we find clear morphological differences promoted by the current allopatric distribution of the populations. In the Gredos sample, intrapopulational variation is high (MCV = 1.90) whereas in the Guadarrama sample it is lower (1.62). These results correspond well with the hypothesis of expansion of 'L.' cyreni along the Spanish Sistema Central in the past, as the geographically most distant populations reveal reduced morphological variability.

In 'L.' monticola, the lowland Coruña male and Central Cantabric female samples show comparable high values of variability. As for the Coruña specimens, the result is plausible, as this area is probably refuge and primitive habitat of 'L.' monticola after the lizard's almost complete competitive displacement by other lacertid species (Podarcis bocagei, Podarcis hispanica). The phenomenon of displacement could also explain the presence of 'L.' monticola in Pleistocene ref-

43

Taxonomic revision of 'Lacerta' monticola and 'L.' cyreni

Fig. 1: Distribution of the taxa studied.

Arrow - 'Lacerta' monticola monticola; punctuated area - 'L.' monticola cantabrica; circle - 'L.' cyreni cyreni; star - 'L.' cyreni castiliana ssp. nov.; asterisk - 'L.' cyreni martinezricai ssp. nov.

Abb. 1: Verbreitung der untersuchten Taxa.

Pfeil - 'Lacerta' monticola monticola; punktierte Fläche - 'L.' monticola cantabrica; Kreis - 'L.' cyreni cyreni; Stern - 'L.' cyreni castiliana ssp. nov.; Asterisk - 'L.' cyreni martinezricai ssp. nov.

uges in the lowland areas of Asturias nearby the Central Cantabric Mts. In the East Cantabric Mts. and Picos de Europa, the intrapopulation variability is drastically reduced which probably corresponds to a postglacial extension of the lizard's distribution. However, the hypothesis of the presence of 'L.' monticola in all low altitude parts of Asturias during Pleistocene cannot be rejected, as it still lives there in isolated colonies in the low Sierras de Cuera and Sueve which form the easternmost part of its distribution area. A scenario of different isolated refuges, with later spreading and introgression, as has been postulated for *Vipera seoanei* in the same area (SAINT GIRONS & al. 1986; BEA & al. 1984) is also imaginable.

Presence or absence of an azygous scale between the prefrontals could serve as a marker for relationship between these 'L.' monticola populations: The frequency of its presence is high in coastal Coruña populations (58%), slighty less in the other

Fig 2: 'Lacerta' monticola, Canonical Variate Analysis (top: males; bottom: females).

Representation of canonical discriminant functions 1 and 2. 1 - Estrella; 2 - Coruña coast; 3 - Lugo coast; 4 - Lugo Mts.; 5 - Sanabria area; 6 - West Cantabric Mts.; 7 - Central Cantabric Mts.; 8 - East Cantabric Mts.; 9 - Picos de Europa Massif.

Abb 2: 'Lacerta' monticola, Kanonische Varianzanalyse (oben: Männchen; unten: Weibchen).

Darstellung der Kanonischen Diskriminanzfunktionen 1 and 2. 1 - Estrella; 2 - Coruña Küste; 3 - Lugo Küste; 4 - Lugo Gebirge; 5: Gebiet Sanabria; 6: westliches Kantabrisches Gebirge; 7 - zentrales Kantabrisches Gebirge; 8: östliches Kantabrisches Gebirge; 9: Picos de Europa.

Fig 3: 'Lacerta' cyreni, Canonical Variate Analysis (top: males; bottom: females). Representation of canonical discriminant functions 1 and 2. 1 - Estrella ('L.' monticola); 2 - Peña de Francia; 3 - Bejar; 4 - Gredos; 5 - Guadarrama.

Abb 3: 'Lacerta' cyreni, Kanonische Varianzanalyse (oben: Männchen; unten: Weibchen). Darstellung der Kanonischen Diskriminanzfunktionen 1 and 2. 1 - Estrella ('L.' monticola); 2 - Peña de Francia; 3 - Bejar; 4 - Gredos; 5 - Guadarrama.

Galicia samples (coastal Lugo: 41%; West Cantabric Mts.: 33%) and becomes low towards the east (Central Cantabric Mts.: 12%; East Cantabric Mts.: 16%; Picos de Europa: 25%). On the other hand, in Estrella populations, there is a very low percentage of individuals with this anomaly (6%), which is very rare (Gredos: 6%) or absent (Bejar, Guadarrama, Peña de Francia) in the samples of 'L.' cyreni.

TAXONOMIC CONCLUSIONS

'Lacerta' monticola BOULENGER, 1905

S y n o n y m s: Lacerta muralis var. monticola BOULENGER, 1905 - Trans. Zool. Soc. London, 17: 365. tab. 24, fig 11. Lacerta muralis monticola MERTENS & MÜLLER, 1928 - Abh. Senck. naturf. Ges. Frankfurt, 41: 36. Lacerta estrellensis CY-RÉN, 1928 - Göteborg. Vetensk. Handl.,(B) 1: 10. Terra typica: Lagoa Comprida, S^a da Estrella, Portugal. Archaeolacerta monticola LANZA, CEI & CRESPO, 1977 - Monitore Zool. Ital., (N. S.) 11: 212.

T y p e: Specimens from 'Spain' and 'Estrella' were designated as types by BOULENGER (1920/21) in his second description of the taxon. The terra typica has already been restricted to S^a da Estrella (MERTENS & MÜLLER 1928). The British Museum female specimen from S^a da Estrella of BOULENGER'S (1920/21) 'types' could be selected as lectotype.

A medium-sized Diagnosis: robust lizard of the 'Archaeolacerta' type. Dorsum with various tones of green or brown, frequently with black dots, arranged in one (more rarely two) series all along dorsum length, frequently covering all of its width. Females and young sometimes uniform or scarcely dotted dorsally. Costal band frequently reticulated in males and females, less frequently uniform, dark brown or almost black. Usually some blue ocelli in the shoulder region, more developed in males. Pileus with medium-sized dots, occasionally vermiculated in old specimens. Venter white, green or bluish, more or less spotted. Hatchlings with uniform ('L.' m. cantabrica) or reticulated ('L.' m. monticola) temporal bands, dorsum usually with very few or without marks, tail blue or greenish with few or without spots. Variable rostral-internasal contact (frequently present in Cantabric populations and absent in Portuguese populations) and variable (more frequently without) postocular-parietal contact. Hemipenial microornamentation crown-shaped (BÖHME 1971). Karyotype: 36 acrocentric macrochromosomes, sex chromosome W euchromatic, NOR in apical position of the telomere of a big pair of chromosomes (ODIERNA & al. 1994, and in press).

Distribution see under subspecies.

'Lacerta' monticola monticola BOULENGER, 1905 (plate 2)

Synonyms: As for the species.

Type: As for the species.

D i a g n o s i s: A very big and robust 'L.' monticola (up to 84 mm SVL), with striking contrast between the clear greenish, bluish (males) or brownish (females) background tinge and the heavily spotted and reticulate dorsum and flanks in adult specimens. Venter usually heavily spotted in adults. Hatchlings with reticulate temporal bands. Rostral usually not in contact with internasal.

Distribution: S^a da Estrella, Portugal.

H a b i t a t: Oromediterranean broom hathlands with meadows and rocky granite - granodiorite outcrops.

> 'Lacerta' monticola cantabrica MERTENS, 1929 (plate 3)

T y p e: Male, Senckenberg Museum (SMF 22098) Rodiezmo, León, Spain (J. BERNARDEZ leg.).

D i a g n o s i s: A moderately robust 'L.' monticola, very variable in coloration and pattern. This subspecies englobes almost all of the morphological variation of the species diagnosis. Hatchlings with uniform temporal bands. Rostral frequently in contact with internasal. Post-

47

Taxonomic revision of 'Lacerta' monticola and 'L.' cyreni

Fig 4: Phenetic relations between 'Lacerta' monticola populations. (squared MAHALANOBIS distances clustered according to the UPGMA method). Abb. 4: Phänetische Beziehungen zwischen den Populationen von 'Lacerta' monticola. (quadrierte MAHALANOBIS-Distanzen nach der UPGMA Methode geklustert).

ocular and parietal frequently not in contact.

D is tribution: Galicia (isolated populations in very shady and humid valleys from the coast to the upper inland mountains, where it is more common and widespread) and all along the Cantabric Mountains (with a wide altitudinal distribution) as far as Picos de Europa Massif (Cornión=Covadonga Massif) and S^a de Sueve and S^a Cuera in the west. The Cares river seems to be the eastern limit of the territory of this subspecies in the Cantabric Mts. For Galicia also indicated for San Paio Island (Lugo coast) by GALAN & FERNANDEZ (1993).

H a b i t a t: Present in a wide variety of habitats. Lowland populations inhabit marine cliffs, rocky outcrops, old constructions and stone walls, stream gullies covered with autochtonous deciduous forest ('Fragas' or 'Carballeiras' - Quercus

OSCAR J. ARRIBAS

Fig. 5: Pattern variability in 'Lacerta' cyreni castiliana ssp. nov. from Gredos, I. Abb. 5: Zeichnungsvariabilität bei 'Lacerta' cyreni castiliana ssp. nov. von Gredos, I.

robur, Castanea sativa, Betula celtiberica, Corylus avellana). In these scarce and endangered autochtonous forests (also habitat of Chioglossa lusitanica) the lizard lives near the water edge or in open areas as track talus or rocky outcrops, where sun reaches the ground of the forest. As soon as the humid and closed forest disappears (by fire or by Eucalyptus plantation) this species is replaced by more heliophilous lizards as Podarcis bocagei or P. hispanica (P. GALAN, pers. comm.). In mountainous areas, it also dwells on stone outcrops, talus, rocky boulders, shrub and slopes near open forests (Quercus petrea, Qu. pyrenaica, Fagus sylvatica, mixed with dispersed stands of Betula celtiberica, Sorbus aucuparia, S. aria and Crataegus monogyna) where the lizards predominate in degraded areas covered by shrubland of broom and heath (Genista legionensis, Erica spp. and Calluna vulgaris).

'Lacerta' cyreni Müller & Hellmich, 1937

Synonyms: Lacerta monticola cyreni Müller & HellMich, 1937 -Zool. Anz. Leipzig, 117: 67.

T y p e: Male, Zoologische Staats-

Abb. 6: Zeichnungsvariabilität bei 'Lacerta' cyreni castiliana ssp. nov. von Gredos, II.

sammlung München (ZSM 2329a) Puerto de Navacerrada, Sierra de Guadarrama. 10-6-1935. W. HELLMICH leg.

50

Diagnosis: A medium-sized lizard of the 'Archaeolacerta' type. Characterized by strongly reticulated flanks, sometimes (more frequently in females) by uniform temporal bands (usually with fading medium and lower parts). Vertebral band formed by one or two juxtaposed rows of dots. Greenish and brown individuals in equal proportion and present in both sexes. Almost never blue ocelli in the shoulder region. Ventral punctuation absent in adults, or, at least, reduced in the most external scale rows. Rostral and internasal scales almost always in contact, postocular and parietal scales usually not in contact. Hatchlings with characteristic reticulation of flanks, dorsum and tail heavily spotted, tail greenish. Hemipenial microornamentation crown-shaped (BÖHME 1971). Karyotype: 36 macrochromosomes, with a heterochromatinized (except for a little euchromatic intercalary band) W sex chromosome, NOR in an intercalary (subtelomeric) position of a medium-sized pair of chromosomes.

Distribution: Spanish Sistema Central, with allopatric populations in S^a de Guadarrama, Gredos, Paramera, La Serrota, Bejar and Peña de Francia.

'Lacerta' cyreni cyreni MÜLLER & HELLMICH, 1937 - comb. nov. (plate 1)

Synonyms: As in the species.

Type: As in the species.

D i a g n o s i s: A L. cyreni characterized by a sharply contrasting dark pattern (brownish specimens are more frequent than green ones). Reduced number of ventralia [males: 24.6 (23-26), females: 27.6 (25-29)], increased number of circumanalia [males: 8.46 (7-12), females: 8.5 (8-10)], smaller relative masseteric scale diameter [\emptyset M/PaL - males: 36.17 (30.9-43.75), females: 34.97 (0-50)], slighty reduced numbers of dorsalia [males: 49.9 (45-53), females: 48.3 (43-54)] and gularia [males: 24.23 (21-27), females: 23.85 (19-27)], shorter hindlimbs (in females), as compared to the following subspecies.

Distribution: Sierra de Guadarrama. H a b i t a t: Oro- and crioromediterranean areas, usually in rocky outcrops with meadows and broom heathlands (*Cyti*sus balansae, Echinospartum barnadesii).

'Lacerta' cyreni castiliana ssp. nov. (figs. 5 and 6, plates 1 and 2)

H o l o t y p e: Male, CA 86071819, Laguna Grande, Circo de Gredos, Sierra de Gredos. 18-7-1986. O. AR-RIBAS & J. GARCÍA leg.

Diagnosis: A 'L.' cyreni with a more variable pattern, frequently reticulated, reticulation partially fading at the flanks. Green and brown specimens present in equal proportion. Compared to the nominal subspecies: Dark pattern reduced, higher numerical values for ventralia [male: 26.1 (24-29), female: 29 (26-31)], dorsalia [males: 51.3 (46-57), females: 52.25 (47-59)], gularia [males: 25.35 (23-31), females: 25.7 (22-33)], relative masseteric scale diameter [ØM/ PaL - males: 42.6 (32.3-53.8), females: 40.1 (25.5-50)], and hindlimb length; less circumanalia [males: 6.47 (5-8), females: 7.17 (5-9)].

Description of holotype: Adult male with broken tail. Snout-vent length: 70.1 mm; forelimb length: 25.5 mm; hindlimb length: 34.6mm; 4th digit length: 11.7 mm; head height: 8 mm; pileus length: 17.5 mm; pileus width: 8 mm; head length: 19.1 mm; head width: 12.1 mm; parietal length: 6.1 mm; 1st supratemporal: 3.3 mm; masseteric scales: 1/1; masseteric scale Ø: 2.7/3 mm; anal plate width: 4.7 mm; anal plate length: 2.6 mm; supraoculars: 4/4; supraciliar granules: 11/ 10; postnasals: 1/1; loreals: 2/2; supralabials in front of subocular: 4/4; supralabials behind subocular: 3/3; sublabials: 6/6; submaxillars: 6/6; gularia: 23; collaria: 11; longitudinal rows of dorsalia: 52: transversal rows of ventralia: 26, longitudinal rows in 6 series; periventralia (number of dorsal scales in contact with one ventral scale): 2; femoralia: 18/18; lamellae underneath 4th digit: 28/27; scales forming 6th tail ring: 26; inter-femoralia (scales between left and right row of femoral pores): 3; preanalia: 2; circumanalia: 6; supratemporal emarginates the parietal scale; rostral bordering on internasal by a fairly long suture; 1st post-

(Oviedo, Spanien).

ocular in contact with parietal on the rigth side, separated on the left side; supranasal not in contact with loreal on both sides, but very close on the left side.

54

Small black dots all over the green dorsum. Temporal band reticulated, fading towards its lower edge. Lower lateral line not markedly expressed, fused with the lateral network. The animal appears all reticulated, including the limbs. Pileus profusely spotted with medium sized sharply contrasting black spots. Venter immaculate green.

Paratypes: (57 specimens) 1 female CA 86071701 Plataforma de Gredos, Avila, España, 17-71986, O. ARRI-BAS leg.; 6 males, 15 females CA 860718 (01-18, 20-22) Circo de Gredos, Avila, España, 18-7-1986, O. ARRIBAS & J. GAR-CÍA leg.; 8 males, 14 females CA 860719 (01-22) Circo de Gredos, Avila, España, 19-7-86, O. ARRIBAS & J. GARCÍA leg.; 5 males, 6 females CA 860720 (01-11) Circo de Gredos, Avila, España, 20-7-86 O. Ar-RIBAS & J. GARCÍA leg.; 1 female CA 89071901 Portilla de los Machos, Gredos, Avila, España, 19-7-89 O. ARRIBAS leg.: 1 male EBD 4241 Puerto de Angosturas, Gredos, Avila, España 15-6-1959 A. Co-BOS leg. Paratypes CA 86071701 - female, CA 86071817 - female, CA 86071907 female, CA 86071917 - male will be stored in Naturhistorisches Museum Wien (NMW 35098:1-4), CA 86072008 - female, and CA 86071811 - female in the scientific collection of EBD.

Derivatio nominis: Castiliana, latin adjective of Castilia (Castile), ancient kingdom and region of central Spain which this lizards inhabits.

D is tribution: Sierra de Gredos (eastern, central and western massifs, the latter also known as S^a de Bejar). Populations of the parallel small S^a de La Serrota and S^a Villafranca very probably belong to this subspecies.

H a b i t a t: See under species.

'Lacerta' cyreni martinezricai ssp. nov. (plate 2)

Holotype: Male, CA 3001, Peña de Francia, Salamanca, España, without further data, M. MEUIDE leg.

Diagnosis: A 'L.' cyreni

with very variable pattern, characterized by the presence of blue ocelli in the shoulder region both in males and females. Rostral scale frequently separated from internasal. Hatchlings heavily reticulated, with blue reticulate tail.

I decided to establish this monticolalike taxon because of its above mentioned outstanding features in association with the sharply limited distribution area even though its description had to be based on the unusual small sample size of three specimens. Further specimens were examined but not preserved. I have seen less than a dozen of these lizards in nature and their population probably does not exceed 50 individuals.

Description of holotype: (in parentheses data from paratypes - adult female//hatchling): Adult male, SVL 63.07 (63.98//28.05); forelimb length: 22.24 (18.12//-); hindlimb length: 33.60 (26.83 //-); pileus length: 15.95 (13.42//-); pileus width: 7.47 (6.38//-); parietal length: 5.40 (4.21//-); masseteric scale Ø: 2.10 (1.39//-); tympanic scaleØ: 1.85 (1.35//-); anal plate width: 3.58 (3.21//-); anal plate length: 2.28 (2.05//-); supraciliar granula: 14/13 (8/10// 10/11); gularia: 28 (27//23); collaria: 11 (11//10); dorsalia; 53 (50// 52); ventralia: 24 (29//29); femoralia: 18/ 17 (18/17/17/17); 4th digit lamellae: 28 (23//25); circumanalia: 6 (6//7); rostral separated from internasal (in contact// separated), postocular separated from parietal, and supranasal separated from loreal (both separated // both separated).

Dorsum and flanks with brown background colour, completely reticulated; two blue ocelli in the shoulder region. Some black dots on the outermost lateral ventral scale row. Venter white in life.

Paratypes: An adult female and a hatchling. CA 302-3. Collecting data and pholidosis see under holotype.

Derivatio nominis: Dedicated to Dr. JUAN PABLO MARTINEZ RICA, for his outstanding and serious contributions to the study of the Iberian herpetofauna, in particular the Pyrenean one.

D is tribution, habitat: S^a de la Peña de Francia (Salamanca). A very small population restricted to the uppermost 100 m of this abrupt cone-shaped mountain whose summit is covered by an anthropogenous construction. This strongly threatened population is completely surrounded by *Podarcis hispanica*. Captures must be totally avoided.

ACKNOWLEDGMENTS

To Dr. J. CABOT and Dr. M. DELIBES (Estación Biológica de Doñana) for the loan of lacertid specimens from their collection. To Dr. P. GALAN (La Coruña, Spain) and Mr. M. MEIJDE for the loan

ARENAS, C. & CUADRAS, C. M. & FOR-TIANA, J. (1991): MULTICUA. Paquete no estandard de Análisis Multivariante. Pub. Univ. Barcelona.

ARRIBAS, O. J. (1993): Estatus específico para Lacerta (Archaeolacerta) monticola bonnali LANTZ, 1927.- Bol. R. Soc. Esp. Hist. Nat. (Secc. Biol.); 90 (1-4): 101-112.

BARBADILLO, L. J. 1987: La guia de INCA-FO de los Anfibios y Reptiles de la Península Ibérica, Islas Baleares y Canarias. Madrid (INCAFO), 694 pp.

BEA, A. & BAS, S. & BRAÑA, F. & SAINT GIRONS, H. (1984): Morphologie comparée et répartition de Vipera seoanei LATASTE, 1879, en Espagne.- Amphibia-Reptilia; 5: 395-410.

BÕHME, W. (1971): Über das Stachelepithel am Hemipenis lacertider Eidechsen und seine systematische Bedeutung.- Z. Zool. Syst. Evol.-Forsch.; 9 (3): 187-223.

BOULENGER, G. A. (1905): A contribution to our knowledge of the varieties of the wall lizard (*Lacerta muralis*).- Trans. Zool. Soc. London; 17: 351-436.

BOULENGER, G. A. (1920-1921): Monograph of the Lacertidae; Vol 1 & 2. British Museum (N. H.), 352+451 pp.

BROWN, R. P. & PEREZ MELLADO, V. (1993): Population differentiation in pholidosis of the Iberian Rock Lizard (*Lacerta monticola*).- J. Zool., London; 230: 451-458.

CLARINGBOULD, P. J. (1958): Multivariate quantal analysis.- J. R. statist. Soc.; (B.) 20: 113-121.

CUADRAS, C. M. (1981): Métodos de Análisis Multivariante; Barcelona (Eunibar), 642 pp.

CYRÉN, O. (1928): Spanische und Portugiesische Mauereidechsen.- Göteborgs Kunigl. Vet. Vitt. Handl.; (B) 1: 1-36.

ELVIRA, B. & VIGAL, C. R. (1982): Nuevos datos sobre la distribución geográfica de *Lacerta* monticola cantabrica.- Doñana Acta Vertebrata; 9: 99-106.

GALAN, P. (1982): Nota sobre las *Lacerta* monticola BOULENGER, 1905 de las zonas costeras del Norte de Galicia.- Doñana Acta Vertebrata; 9: 380-384.

GARCÍA PARÍS, M. & MARTÍN, C. & DORDA, J. & ESTEBAN, M. (1989): Los Anfibios y Reptiles de Madrid; M.A.P.A., 243 pp.

de Madrid; M.A.P.A., 243 pp. HINTZE, J. L. (1991): Number Cruncher Statistical System. Ver 5.03. Installation and Reference Manual. Kaysville, Utah., 442 pp.

JARDINE, N. & SIBSON, R. (1971): Mathematical taxonomy. New York (John Wiley & sons), 286 pp. of specimens from their private collections. Especially to J. GARCIA (Huesca, Spain), for help during several years' summer study trips to the Sistema Central and the Cantabric Mountains.

REFERENCES

LIZANA, M. & MARTÍN-SANCHEZ, R. & MO-RALES, J. J. & LOPEZ-GONZALEZ, J. & GUTIERREZ, J. (1993): Nuevas poblaciones de la lagarija serrana (*Lacerta monticola cyreni*) en las Sierras de Avila.-Bol. Asoc. Herpetol. Esp.; 4: 5-7. MAXWELL, A. E. (1961): Canonical variate

MAXWELL, A. E. (1961): Canonical variate analysis when the variables are dichotomous.- Educ. Psychol. Measur.; 21: 259-271. MAYER, W. & ARRIBAS, O. J. (1996): Al-

MAYER, W. & ARRIBAS, O. J. (1996): Allozyme differentiation and relationship among the Iberian-Pyrenean Mountain Lizards.- Herpetozoa, Wien; 9 (1/2): 57-61.

MAYR, E. & ASHLOCK, P. D. (1991): Principles of systematic zoology. Singapore (McGraw Hill), 475 pp.

MERTENS, R. (1929): Zur Kenntnis der Eidechsenfauna Nordwest-Spaniens.- Abh. Senckenberg. Naturf. Ges.; 39: 282-289. MERTENS, R. & MÜLLER, L. (1928): Liste

MERTENS, R. & MÜLLER, L. (1928): Liste der Amphibien und Reptilien Europas.- Abh. Senckenberg. Naturf. Ges.; 41 (1): 1-62.

MÜLLER, L. & HELLMICH, W. (1937): Mitteilungen über die Herpetofauna der Iberischen Halbinsel II: Zur Kenntnis der *Lacerta monticola*.- Zool. Anz.; 117: 65-73.

ODIERNA, G. & OLMO, E. & COBROR, O. (1987): Taxonomic implications of NOR-localization in lacertid lizards.- Amphibia-Reptilia; 8: 373-382.

ODIERNA, G. & APREA, G. & ARRIBAS, O. & CAPRIGLIONE, T. & CAPUTO, V. (1994): La cariologia di due taxa rappresentati nell'erpetofauna montana: *Discoglossus* OTTH, 1837 e le *Archaeolacerta* MEHELY, 1909 iberiche.- Abstracts 1° Convegno italiano di Erpetologia Montana. Trento 6-9 aprile 1994.

ODIERNA, G. & APREA, G. & ARRIBAS, O. & CAPRIGLIONE, T. & OLMO, E. (1995): The caryosystematics of the Iberian rock lizards.- Abstracts 2nd. International Congress of Lacertids of the mediterranean region.

ÖDIERNA, G. & APREA, G. & ARRIBAS, O. & CAPRIGLIONE, T. & OLMO, E. (in press): The karyology of Iberian Rock Lizards. Herpetologica.

PEREZ MELLADO, V & BARBADILLO, L. J. & BARAHONA, F. & BROWN, R. P. & CORTI, C. & GUERRERO, F. & LANZA, B. (1993): A systematic survey of the Iberian Rock Lizard, Lacerta (Archaeolacerta) monticola. In: VALAKOS, E. & BÖHME, W. & PEREZ MELLADO V. & MARAGOU, P. (eds.): Lacertids of the mediterranean Region. 85-105.

ROHLF, F. J. (1962): A numerical taxonomic study of the genus *Aedes* (Diptera: Culicidae) with emphasis on the congruence of larval and adult classifications.- Ump. Ph. Dr. diss. University of Kansas. 98 pp.

SAINT GIRONS, H. & BEA, A. & BRAÑA, F.

(1986): La distribución de los diferentes fenotipos de Vipera seoanei LATASTE, 1879, en la región de los Picos de Europa (Norte de la Península Ibérica).-Munibe; 38: 121-128.

SALVADOR, A. (1974): Guia de los Anfibios y Reptiles españoles. Madrid (ICONA), 282 pp.

SALVADOR, A. (1984): Lacerta monticola BOULENGER, 1905. Iberische Gebirgseidechse. In: BÖHME, W. (ed.): Handbuch der Reptilien und Amphibien Europas.Vol. 2/1, Echsen II (Lacerta). Wiesbaden (Aula) pp. 276-289.

SNEATH, P. H. A. & SOKAL, R. R. (1973): Numerical taxonomy. San Francisco (Freeman & Co.). 573 pp.

SOKAL, R. R. & ROHLF, J. (1969): Biometry. The principles and practice of statistics in biological research. New York (Freeman & Co.), 887 pp.

DATE OF SUBMISSION: November 27th, 1995

Corresponding editor: Heinz Grillitsch

AUTHOR: OSCAR J. ARRIBAS, Departament de Biologia Animal (Zoologia), Universitat Autónoma de Barcelona, edif. C, E-08193 Bellaterra (Barcelona), Spain.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Herpetozoa

Jahr/Year: 1996

Band/Volume: 9_1_2

Autor(en)/Author(s): Arribas Oscar J.

Artikel/Article: <u>Taxonomix revision of the Iberian 'Archaeolacertae' I.: A new</u> interpretation of the geographical variation of 'Lacerta' monticola Boulenger, <u>1905 and 'Lacerta' cyreni Müller & Helmich, 1937 (Squamata: Sauria:</u> <u>Lacertidae).</u> <u>31-56</u>