Über den elektrischen Widerstand des Ceylongraphits

Bruno Piesch,

stud. phil. in Wien.

Die Untersuchungen verschiedener Kohlenarten auf ihren elektrischen Widerstand und dessen Abhängigkeit von der Temperatur haben das bekannte Resultat ergeben, dass der Widerstand der Kohle mit Erhöhung der Temperatur abnimmt, und auch die im Folgenden mitgetheilten Beobachtungen am Ceylongraphit stimmen mit diesem allgemeinen Resultat überein. Aber die Abhängigkeit des Widerstandes von der Temperatur ist bei den einzelnen Kohlenarten eine sehr verschiedene und steht gewiss mit der Verschiedenheit in einigen anderen physikalischen und chemischen Eigenschaften im Zusammenhang. So zeichnet sich der Ceylongraphit gegenüber dem bisher untersuchten feinkörnigen sibirischen Graphit durch seine blätterige Structur aus, und schon diese Unterschiede in den Structurverhältnissen legen es nahe, dass diese beiden Graphitarten auch in ihrem elektrischen Leitungsvermögen Unterschiede zeigen müssen. Die Beobachtungen haben dies auch thatsächlich bestätigt und haben ausserdem noch einige bemerkenswerthe Eigenschaften in dem Verhalten des Ceylongraphits ergeben, von denen ich eine gleich hervorheben will. Es wurden nämlich mittelst einer Säge aus einem grösseren Stück vier möglichst dünne parallelepipedische Stücke herausgeschnitten, und dieselben ergaben merklich verschiedene Resultate, wie aus der späteren Zusammenstellung ersichtlich sein wird.

Ich will nun zunächst kurz die Art der Contacte, der Erwärmung und die angewandte Methode der Widerstandsbestimmung angeben. Ein Contact, der wohl am einfachsten herzustellen ist, ist der, an die galvanisch verkupferten Enden des Graphitstückes Kupferstreifen oder -Drähte anzulöthen, jedoch lässt der tiefe Schmelzpunkt des Zinnlothes keine grosse Temperatursteigerung zu, und daher gebrauchte ich diese Art des Contactes nur bei Temperaturen unter Null Graden. Bei den anderen Messungen benützte ich Quecksilbercontact mit folgender Anordnung. In zwei Korkplatten, die durch Glasstäbe mit einander verbunden waren, wurden Vertiefungen zur Aufnahme von Quecksilber angebracht. In die obere der Korkscheiben wurde das Graphitstück derart befestigt, dass es in die Vertiefung ragte, und nur die obere Endfläche mit dem Quecksilber in Berührung kam. Die Korkplatten wurden dann einander soweit genähert, bis der Contact zwischen der unteren Endfläche des Graphits mit der Quecksilberoberfläche der unteren Korkplatte hergestellt war. Das Ganze kam in ein Becherglas und wurde durch die starken Zuleitungsdrähte an den Klemmschrauben des Deckels befestigt. Das Becherglas wurde in einem Ölbade erwärmt, und es konnte auf diese Weise die Temperatur in demselben hinreichend lange constant erhalten werden. Bei den ganz tiefen Temperaturen wurde das Graphitstück selbst von fester Kohlensäure umgeben.

Zu den Widerstandsmessungen benützte ich die von F. Kohlrausch angegebene Abänderung der Thomson'schen Messbrücke, bei welcher der zu messende und der Vergleichswiderstand hintereinander in den Stromkreis, ein Differentialgalvanometer in übergreifendem Nebenschluss eingeschaltet war, derart, dass je eine Drahtrolle des Galvanometers mit den entsprechenden Enden beider Widerstände in Verbindung stand; als Vergleichswiderstand diente ein Kupferdraht von bekanntem Widerstand und bestimmter Länge, die durch einen Schiebercontact beliebig abgeändert werden konnte. Bei dieser Methode der Widerstandsmessung brauchen die Widerstände der Zuleitungsdrähte und ihre Änderung mit der Temperatur, ferner auch Contactfehler bei der Verschiebung und Fehler des Galvanometers nicht berücksichtigt zu werden. Es folgen nun zuerst die Beobachtungen der Widerstandsmessungen der einzelnen Graphitstücke bei den verschiedenen Temperaturen, und zwar wurden die Stücke II und IV auch bei Temperaturen unter 0° untersucht. Sämmtliche Widerstände sind in Siemens-Einheiten ausgedrückt.

I. Stück Specif. Gewicht = 2.25		II. Stück Specif. Gewicht = 2.22		III Specil	. Stück f. Gewicht 2·244	IV. Stück Specif. Gewicht = 2.25	
t		t		t		t	
26°	0.06794	23°	0.02726	23°	0.13260	25°	0.08190
68	0.06641	63	0.02675	65	0.12930	65	0.07924
110	0.06444	109	0.02613	103	0.12488	107	0.07659
158	0.06214	147	0.02566	142	0.12074	149	0 07371
198	0.06061	187	0.02535	183	0 11598	189	0.07078
229	0.05953	215	0.02503	224	0.11169	231	0.06825
		23	0.03783			-12	0.08424
		—15	0.03876			80	0.08572
		—83	0.03946				

Aus diesen Beobachtungen berechnete ich die Temperaturcoëfficienten nach der Gleichung $w \equiv a + bt + ct^2 \equiv a (1 + \alpha t + \beta t^2)$, und zwar, um eine möglichst grosse Genauigkeit zu erreichen, nach der Methode der kleinsten Quadrate. Bei den Stücken II und IV sind die Coëfficienten für Temperaturen unter Null aus den zuletzt angegebenen Beobachtungen allein berechnet worden. Ausserdem gebe ich hier die specifischen Widerstände an, bezogen auf den Widerstand einer Quecksilbersäule von 1 m Länge und $1 mm^2$ Querschnitt. Es ergaben sich folgende Werthe:

770

	I. Stück	II. Stück für Temperaturen über 0°	II. Stück für Temperaturen unter 0°	III. Stück	IV Stück für Temperaturen über 0°	IV. Stück für Temperaturen unter 0°	IV. Stück. Berechnung nach der Gleichung w = a+bt
<i>a</i> =	0.069265	0.027628	0.038288	0.13485	0.08357	0.08357	0.08362
b = -0.0000	4594	155	1306	8801	6583	6071	6684
c = 0.000000	+013	+016	+0276	·-0739	00394	-422	
$\alpha = -0.000$	6630	5612	341	6526	7878	7265	7994
$\beta = 0.00000$	+0188	+0594	+0719	0548	-00471	5054	
Specifischer Widerstand	29.87	25.83		85.69	50.27	_	

In der letzten Rubrik sind die Coëfficienten für IV angegeben, wie sie sich aus der einfacheren Formel $w = a + bt = a(1 + \alpha t)$ ergeben. Um eine Controle für die Genauigkeit zu haben, sind bei IV nach den erhaltenen Coëfficienten die Widerstände für die einzelnen Beobachtungstemperaturen berechnet worden und ist die Übereinstimmung mit den beobachteten Widerständen eine sehr gute. Ich will hier die einzelnen Werthe zur Vergleichung zusammenstellen.

 \sim

 $\frac{7}{1}$

,	Beobachtete Wider-	Widerstände berechnet nach der Formel				
t	stände	$n = a + bt + ct^2$	iv = a + bt			
$ \begin{array}{r} -80 \\ -12 \\ 25 \\ 65 \\ 107 \\ 149 \\ 189 \\ 231 \\ \end{array} $	$\begin{array}{c} 0 \cdot 08572 \\ 0 \cdot 08424 \\ 0 \cdot 08190 \\ 0 \cdot 07924 \\ 0 \cdot 07659 \\ 0 \cdot 07659 \\ 0 \cdot 07371 \\ 0 \cdot 07078 \\ 0 \cdot 06825 \end{array}$	$\begin{array}{c} 0\cdot 08572\\ 0\cdot 08423\\ 0\cdot 08192\\ 0\cdot 07927\\ 0\cdot 07648\\ 0\cdot 07367\\ 0\cdot 07098\\ 0\cdot 06815\end{array}$	$\begin{array}{c} 0\cdot 08595\\ 0\cdot 08396\\ 0\cdot 08194\\ 0\cdot 07926\\ 0\cdot 07645\\ 0\cdot 07645\\ 0\cdot 07375\\ 0\cdot 07098\\ 0\cdot 06817\end{array}$			

Wenn wir die erhaltenen Werthe für den specifischen Widerstand des Ceylongraphits vergleichen mit den entsprechenden Werthen, die von Muraoka (Wied. Ann., XIII [1881]) für sibirischen Graphit gefunden wurden, so macht sich hier ein sehr bedeutender Unterschied bemerkbar, und zwar geht derselbe dahin, dass unser Ceylongraphit bei weitem schlechter leitet als der sibirische. Diese Thatsache ist umso auffallender, weil der Ceylongraphit ein grösseres specifisches Gewichtbesitzt als der andere. Muraoka gibt letzteres mit 1.8 an. Es scheint also auch hier ein Zusammenhang des Leitungsvermögens mit dem specifischen Gewichte ganz ausgeschlossen.

Es wäre noch das verschiedene Verhalten der einzelnen Stücke zu bemerken, und ich glaube, dass diese Erscheinung zum Theil auf die krystallinischen Eigenschaften des Graphits zurückzuführen ist, dass er also nach den verschiedenen Richtungen hin ein verschiedenes Verhalten zeigt. Auch eine zweite Erscheinung, wie sie sonst bei stark krystallinischen Substanzen auftritt, ist mir hier sehr aufgefallen, dass nämlich der Widerstand nach einer starken Erwärmung bei der Abkühlung nicht auf denselben ursprünglichen Werth zurückkehrt, sondern darüber hinauswächst; ein entsprechendes Verhalten zeigt sich auch nach einer starken Abkühlung. In der ersten obigen Tabelle ist diese Erscheinung auch ersichtlich, indem für das II. Stück bei 23° zwei verschiedene Werthe für den Widerstand angegeben sind, wovon aber der zweite von der Messung nach der starken Erwärmung herrührt.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Sitzungsberichte der Akademie der Wissenschaften</u> mathematisch-naturwissenschaftliche Klasse

Jahr/Year: 1893

Band/Volume: 102_2a

Autor(en)/Author(s): Piesch Bruno

Artikel/Article: Über den elektrischen Widerstand des Ceylongraphits 768-772