Gleichgewichtsverzweigung an einem querbelasteten Druckstabe

Von

Karl Girkmann, Wien

(Mit 5 Textfiguren)

Vorgelegt in der Sitzung am 20. Nov. 1941

Im folgenden wird gezeigt, daß der querbelastete Druckstab nach Fig. 1a — ein unnachgiebig gestützter Durchlaufträger mit zwei Feldern — im Falle der vollkommenen Symmetrie des Systems und der Belastung eine Verzweigungsstelle des Gleichgewichtes besitzt, indem unter bestimmten Lastpaaren S, pneben der symmetrischen Gleichgewichtsform noch eine unendlich benachbarte, unsymmetrische Gleichgewichtslage besteht.

Es werden folgende Voraussetzungen getroffen: Die Stabachse sei vollkommen gerade, die Gegenkräfte S greifen genau mittig an, der Querschnitt des Stabes (Fläche F, Trägheitsmoment J) sei unveränderlich, die Wirkungsebene der Biegungsmomente schneide die Querschnittsebenen längs einer Trägheitshauptachse, die Lager seien reibungsfrei drehbar, bzw. verschiebbar, der Werkstoff sei homogen. Es werden nur rein elastische Spannungszustände berücksichtigt.

Wir legen zunächst die symmetrische Gleichgewichtsform fest. Mit den Bezeichnungen der Fig. 1a erhält man für das Biegungsmoment im Abstande x von der linken oder rechten Endstütze

$$M_x = Sy + Ax - \frac{1}{2} px^2.$$
 (1)

Wir setzen die Durchbiegungen y als klein gegenüber der Stützweite a voraus und dürfen dann näherungsweise die Biegelinie des Stabes aus der vereinfachten Differentialgleichung

$$y'' = -\frac{M_x}{EJ} \tag{2}$$

ermitteln. Für M_x den Wert aus Gl. (1) in Gl. (2) eingesetzt, entsteht

$$y'' = -\frac{S}{EJ} \left(y + \frac{A}{S} x - \frac{p x^2}{2S} \right); \qquad (1a)$$

das Integral dieser Differentialgleichung lautet

$$y = C_1 \sin \alpha \, x + C_2 \cos \alpha \, x - \frac{A}{S} \, x + \frac{p \, x^2}{2 \, S} - \frac{p}{\alpha^2 S} \,, \qquad (3)$$

wobei

$$\alpha = \sqrt{\frac{S}{EJ}} \,. \tag{4}$$

Zur Bestimmung der Integrationskonstanten C_1 , C_2 und des Auflagerdruckes A stehen drei Randbedingungen zur Verfügung:

$$y = 0 \text{ in } x = 0 \text{ und } x = a, y' = 0 \text{ in } x = a.$$
 (5)

Die Auswertung dieser Beziehungen führt mit Hilfe der Gl. (3) und (4) zu folgenden Ergebnissen:

$$C_{1} = \frac{p}{\alpha^{2}S} \quad \frac{\frac{1}{2} \alpha^{2} a^{2} + 1 - \alpha a \cdot \sin \alpha a - \cos \alpha a}{\sin \alpha a - \alpha a \cos \alpha a}$$

$$C_{2} = \frac{p}{\alpha^{2}S} \qquad (6)$$

$$A = -\frac{p}{\alpha} \quad \frac{\alpha a \sin \alpha a - 1 - (\frac{1}{2} \alpha^{2} a^{2} - 1) \cos \alpha a}{\sin \alpha a - \alpha a \cos \alpha a}.$$

Damit ist die Biegelinie des Stabes festgelegt.

I. Ein erster Näherungswert für die Knicklast.

Wir überlagern den Durchbiegungen y nach Gl. (3) noch die unendlich kleinen, nach einer vollen Sinuswelle verlaufenden Durchbiegungen (Fig. 1b):

$$w = C_0 \sin \frac{\pi x}{a} \quad (0 \le x \le 2a) \tag{7}$$

und untersuchen, unter welcher Bedingung die so entstehende Biegelinie ebenfalls eine Gleichgewichtslage bildet. Werden die Abszissen x wieder von den Stabendpunkten 0 und 2 aus gezählt, dann lauten die Gesamtverschiebungen:

Feld 0-1
$$y+w = y+C_0 \sin \frac{\pi x}{a}$$

Feld 1-2 $y+w = y-C_0 \sin \frac{\pi x}{a}$. (8)

Der Stab hat über der Mittelstütze keine Krümmungsänderung erfahren und aus der Betrachtung des Gleichgewichtes der äußeren Kräfte ist zu erkennen, daß auch die Auflagerdrücke die gleichen

sind wie im Ausbiegungszustande y nach Gl. (3). Für einen Querschnitt im Abstande x von der linken bzw. rechten Endstütze erhält man demnach das Biegungsmoment

$$M_x + \circ M_x = S\left(y \pm C_0 \sin \frac{\pi x}{a}\right) + A x - \frac{1}{2} p x^2.$$
 (9)

Mit Gl. (1) ergibt sich hieraus

$$\delta M_x = \pm S C_0 \sin \frac{\pi x}{a} \,. \tag{10}$$

Soll nun die Biegelinie y+w eine Gleichgewichtslage bilden, dann muß die Differentialgleichung

$$y'' \pm \frac{d^2}{dx^2} \left(C_0 \sin \frac{\pi x}{a} \right) = - \frac{1}{EJ} \left(M_x + \delta M_x \right) \tag{11}$$

erfüllt sein. Da $y'' = -\frac{M_x}{EJ}$, muß somit noch die Beziehung

$$\pm \frac{d^2}{dx^2} \left(C_0 \sin \frac{\pi x}{a} \right) = -\frac{1}{EJ} \,\delta M_x$$

bestehen. Führt man die Differentiation aus und setzt man für δM_x den Wert aus Gl. (10) ein, so entsteht

$$\mp C_0 \frac{\pi^2}{a^2} \sin \frac{\pi x}{a} = \mp \frac{S}{EJ} C_0 \sin \frac{\pi x}{a}$$

und weiterhin

$$S = \frac{\pi^2 E J}{a^2} \equiv S_E. \tag{12}$$

Die Knicklast S des querbelasteten Druckstabes wäre demnach gleich der Eulerlast S_E des querbelastungsfreien Stabes und somit von der Größe der gleichzeitig wirkenden Querbelastung p unabhängig.

Das gegenständliche Stabilitätsproblem soll nun einer schärferen Behandlung unterzogen werden.

II. Untersuchung nach dem Energieverfahren.

a) Die Lasten S und p mögen bereits kritische Werte erreicht haben. Die zugehörige symmetrische Gleichgewichtslage y ist durch die Gl. (3) bestimmt. Es muß dann noch mindestens eine unendlich benachbarte Gleichgewichtslage bestehen. Wir denken uns dieselbe entstanden, indem den endlich kleinen Durchbiegungen y noch verschwindend kleine Verschiebungen gleicher Richtung und der Größe

$$w = \pm C_0 \sin \frac{\pi x}{a} \tag{13}$$

überlagert werden; das +-Zeichen bezieht sich auf die Stabachsenpunkte des linken, das (—)-Zeichen auf jene des rechten Feldes. Die Punkte der Stabachse erfahren aber auch noch Verschiebungen u in der x-Richtung, die klein gegenüber den Verschiebungen w sind und die wir so annehmen wollen, daß die letzteren ohne Längsdehnungen des Stabes vor sich gehen können. In Fig. 2 ist diese Verformungslinie strichliert eingezeichnet. Beim Übergang vom Ausbiegungszustande y zum Zustande y+w leisten die äußeren Kräfte die Arbeit δA_a ; gleichzeitig wird die im Stabe in der symmetrischen Gleichgewichtslage bereits aufgespeicherte Formänderungsenergie einen Zuwachs δA_i erfahren. Wenn das Gleichgewicht unter den betrachteten Lasten S, p indifferent geworden ist, dann muß

$$\delta A_a \doteq \delta A_i \tag{14}$$

sein. Aus dieser Beziehung können wir die unbekannten kritischen

Lastpaare rechnen und die Ergebnisse werden um so zutreffender sein, je näher die angenommene Nachbarlage y+w der wirklichen Knicklinie kommt.

1. Ermittlung der äußeren Arbeit δA_a : Die Querbelastung sei im Ausbiegungszustande y gleichmäßig über die

Projektion 2a der Stablänge verteilt. Wenn die Querlasten pwährend der Verschiebungen u, w der Stabpunkte ihre Richtung beibehalten und wenn ihre Angriffspunkte mit dem Stab in fester Verbindung bleiben, also die Verschiebungen u, w mitmachen, dann

ist der Arbeitsbeitrag der Querlasten $p \operatorname{zu} \delta A_a$ Null: denn längs der Wege uleisten die p keine Arbeit und zum Integral $\int_{2a} pw \, dx$ liefern beide Stabfelder gleich große, aber entgegengesetzt gleiche Beiträge, die sich somit aufheben. Es bleibt dann nur noch der Arbeitsbeitrag der Gegenkräfte S; dieser besitzt die Größe S. $(\Delta a_1 - \Delta a_2)$, wenn Δa_1 und Δa_2 die Feldlängenänderungen (Fig. 2) bedeuten. Somit ist

$$\delta A_a = S \left(\Delta a_1 - \Delta a_2 \right). \tag{15}$$

Zwecks Ermittlung dieser Größen Δa_1 und Δa_2 betrachten wir ein Stab-

element ds an der Stelle x, y der symmetrischen Gleichgewichtsfigur. Die Endpunkte dieses Elementes besitzen die Koordinaten x, y und x+dx, y+dy. Im Ausbiegungszustande y+w haben die Endpunkte die Koordinaten x+u, y+w, und x+dx+u+du, y+dy+w+dw (Fig. 3), während die Elementlänge ds voraussetzungsgemäß dieselbe ist. Somit gilt

^{*)} In Fig. 2 sind die Zeiger der Δa zu vertauschen.

bestehen. Führt man die Differentiation aus und setzt man für δM_x den Wert aus Gl. (10) ein, so entsteht

$$\mp C_0 \frac{\pi^2}{a^2} \sin \frac{\pi x}{a} = \mp \frac{S}{EJ} C_0 \sin \frac{\pi x}{a}$$

und weiterhin

$$S = \frac{\pi^2 E J}{a^2} \equiv S_E. \tag{12}$$

Die Knicklast S des querbelasteten Druckstabes wäre demnach gleich der Eulerlast S_E des querbelastungsfreien Stabes und somit von der Größe der gleichzeitig wirkenden Querbelastung p unabhängig.

Das gegenständliche Stabilitätsproblem soll nun einer schärferen Behandlung unterzogen werden.

II. Untersuchung nach dem Energieverfahren.

a) Die Lasten S und p mögen bereits kritische Werte erreicht haben. Die zugehörige symmetrische Gleichgewichtslage y ist durch die Gl. (3) bestimmt. Es muß dann noch mindestens eine unendlich benachbarte Gleichgewichtslage bestehen. Wir denken uns dieselbe entstanden, indem den endlich kleinen Durchbiegungen y noch verschwindend kleine Verschiebungen gleicher Richtung und der Größe

$$w = \pm C_0 \sin \frac{\pi x}{a} \tag{13}$$

überlagert werden; das +-Zeichen bezieht sich auf die Stabachsenpunkte des linken, das (—)-Zeichen auf jene des rechten Feldes. Die Punkte der Stabachse erfahren aber auch noch Verschiebungen u in der x-Richtung, die klein gegenüber den Verschiebungen w sind und die wir so annehmen wollen, daß die letzteren ohne Längsdehnungen des Stabes vor sich gehen können. In Fig. 2 ist diese Verformungslinie strichliert eingezeichnet. Beim Übergang vom Ausbiegungszustande y zum Zustande y+w leisten die äußeren Kräfte die Arbeit δA_a ; gleichzeitig wird die im Stabe in der symmetrischen Gleichgewichtslage bereits aufgespeicherte Formänderungsenergie einen Zuwachs δA_i erfahren. Wenn das Gleichgewicht unter den betrachteten Lasten S, p indifferent geworden ist, dann muß

$$\delta A_a = \delta A_i \tag{14}$$

sein. Aus dieser Beziehung können wir die unbekannten kritischen

Lastpaare rechnen und die Ergebnisse werden um so zutreffender sein, je näher die angenommene Nachbarlage y+w der wirklichen Knicklinie kommt.

1. Ermittlung der äußeren Arbeit δA_a : Die Querbelastung sei im Ausbiegungszustande y gleichmäßig über die

Fig. 2.*)

Projektion 2a der Stablänge verteilt. Wenn die Querlasten p während der Verschiebungen u, w der Stabpunkte ihre Richtung beibehalten und wenn ihre Angriffspunkte mit dem Stab in fester Verbindung bleiben, also die Verschiebungen u, w mitmachen, dann

ist der Arbeitsbeitrag der Querlasten $p \operatorname{zu} \delta A_a$ Null: denn längs der Wege uleisten die p keine Arbeit und zum Integral $\int_{2a} pw \, dx$ liefern beide Stabfelder gleich große, aber entgegengesetzt gleiche Beiträge, die sich somit aufheben. Es bleibt dann nur noch der Arbeitsbeitrag der Gegenkräfte S; dieser besitzt die Größe S. $(\Delta a_1 - \Delta a_2)$, wenn Δa_1 und Δa_2 die Feldlängenänderungen (Fig. 2) bedeuten. Somit ist

$$\delta A_a = S \left(\Delta a_1 - \Delta a_2 \right). \tag{15}$$

Zwecks Ermittlung dieser Größen Δa_1 und Δa_2 betrachten wir ein Stab-

element ds an der Stelle x, y der symmetrischen Gleichgewichtsfigur. Die Endpunkte dieses Elementes besitzen die Koordinaten x, y und x+dx, y+dy. Im Ausbiegungszustande y+w haben die Endpunkte die Koordinaten x+u, y+w, und x+dx+u+du, y+dy+w+dw (Fig. 3), während die Elementlänge ds voraussetzungsgemäß dieselbe ist. Somit gilt

^{*)} In Fig. 2 sind die Zeiger der Δa zu vertauschen.

$$ds^{2} = dx^{2} + dy^{2}, ds^{2} = d(x+u)^{2} + d(y+w)^{2},$$
(16)

wobei du gegenüber dx klein ist und das Quadrat von du unterdrückt werden kann:

$$ds^{2} = dx^{2} + 2 dx du + dy^{2} + 2 dy dw + dw^{2}.$$
 (16a)

Aus der Gleichsetzung der Ausdrücke für ds² folgt

$$du = -\left(y'w' + \frac{1}{2}w'^{2}\right)dx,$$
(17)

wobei die Striche wieder Ableitungen nach den Abszissen x der Stabpunkte im symmetrischen Ausbiegungszustande y bedeuten.

Um diese Größe du verlängert sich die Projektion dx des Stabelementes ds beim Übergang vom Zustand y zum Zustand y+w; die Gesamtverlängerung des Feldes 0—1 beträgt dann

$$\int_{a}^{a} du = -\int_{0}^{a} \left(y' w' + \frac{1}{2} w'^{2} \right) dx = -\Delta a_{1}.$$
 (18)

Einen gleichartigen Ausdruck erhält man für die Verlängerung $+\Delta a_2$ des Feldes 1—2; führt man in diesen die w des ersten Feldes ein, so entsteht unter Berücksichtigung des hierbei vorzunehmenden Vorzeichenwechsels der w

$$\int_{a}^{a} du = \int_{0}^{a} \left(y' w' - \frac{1}{2} w'^{2} \right) dx = \Delta a_{2}, \qquad (18a)$$

so daß sich die Angriffspunkte der Gegenkräfte S um den Betrag

$$\Delta a_1 - \Delta a_2 = \int_0^u w'^2 \, dx$$

einander nähern. Die Arbeit dieser Kräfte ist somit

$$\delta A_a = S \int_0^a w^{\prime_2} dx. \tag{19}$$

2. Ermittlung der Formänderungsenergie δA_i : Bezeichnen wir mit φ den Neigungswinkel (Fig. 3) des Querschnittes xim Ausbiegungszustande y und mit $\varphi + \Delta \varphi$ den Neigungswinkel desselben Querschnittes im Zustande y+w, wobei sich dieser Querschnitt dann an der Stelle x+u unseres raumfesten Koordi-

262

natensystems befindet, dann können wir δA_i als Differenz der den Ausbiegungszuständen y und y+w zugehörigen Formänderungsenergien wie folgt darstellen:

$$\delta A_{i} \stackrel{\text{def}}{=} \frac{1}{2} EJ \left\{ \int_{a_{1}+a_{2}} \left(\frac{d\left(\varphi+\Delta\varphi\right)}{d\left(x+u\right)} \right)^{2} d\left(x+u\right) - \int_{2a} \left(\frac{d\varphi}{dx} \right)^{2} dx \right\}.$$
(20)

Hierbei wurden die von Querkräften herrührenden Energiebeiträge wegen ihres geringen Einflusses vernachlässigt.

$$\alpha) \quad \text{Entwicklung des Integrales } \int_{2a} \left(\frac{d\,\varphi}{d\,x}\right)^2 d\,x:$$

Aus Fig. 3 folgt $tg \varphi = y'$; somit ist $\varphi = arc tg (y')$ und

$$\frac{d\varphi}{dx} = \frac{y''}{1+y'^2} \doteq y'' (1-y'^2+y'^4\dots).$$
(21)

Die binomische Reihe kann an beliebiger Stelle abgebrochen werden, da bei der Auswertung der Gl. (20) alle Glieder, die nur Ableitungen von y enthalten, wegfallen und daher auch keinen Einfluß auf die Schärfe des Ergebnisses ausüben. Mit Gl. (21) ergibt sich

$$\int_{2a} \left(\frac{d\varphi}{dx}\right)^2 dx = 2 \int_0 y''^2 \left(1 - 2y'^2 + 3y'^4 - 4y'^6 \dots\right) dx.$$
 (22)

$$\beta) \text{ Entwicklung des Integrales} \int_{a_1+a_2} \left(\frac{d \left(\varphi + \Delta \varphi \right)}{d \left(x + u \right)} \right)^2 d \left(x + u \right)$$

Wir führen die Abszisse x als unabhängig Variable ein und bezeichnen wieder die Ableitungen nach x mit Strichen. Nach Gl. (18) ist

$$\frac{d(x+u)}{dx} = 1 - y'w' - \frac{1}{2}w'^2$$
; hieraus folgt

$$\left(\frac{d(x+u)}{dx}\right)^2 = 1 - 2 y'w' + y'^2 w'^2 - w'^2 \dots$$
(23)

$$\frac{d^2(x+u)}{dx^2} = -(y''w'+y'w''+w'w''\dots).$$
(23*a*)

Ferner ergibt sich aus Fig. 3

$$\operatorname{tg}\left(\varphi + \Delta\varphi\right) = \frac{d\left(y + w\right)}{d\left(x + u\right)} \tag{24}$$

und somit ist

$$\varphi + \Delta \varphi = \operatorname{arc} \operatorname{tg} \frac{d(y+w)}{d(x+u)}$$
 (24*a*)

und weiterhin

$$\frac{d(\varphi + \Delta \varphi)}{d(x+u)} = \frac{\frac{d^2(y+w)}{d(x+u)^2}}{1 + \left(\frac{d(y+w)}{d(x+u)}\right)^2}.$$
(25)

Hieraus folgt mittels der binomischen Reihenentwicklung

$$\left(\frac{d\left(\varphi+\Delta\varphi\right)}{d\left(x+u\right)}\right)^{2} = \left(\frac{d^{2}\left(y+w\right)}{d\left(x+u\right)}\right)^{2} \left\{1-2\left(\frac{d\left(y+w\right)}{d\left(x+u\right)}\right)^{2}+\ldots\right\} (25a)$$

Jetzt vollziehen wir den Übergang auf die Variable x:

$$\frac{d(y+w)}{d(x+u)} = \frac{d(y+w)}{dx} \quad \frac{dx}{d(x+u)} =$$

$$= (y'+w') (1+y'w' + \frac{1}{2}w'^2 + y'^2w'^2 \dots) = y'+w' +$$

$$+ y'^2w' + \frac{3}{2}y'w'^2 + y'^3w'^2 \dots,$$
(26)

 $\left(\frac{d(y+w)}{d(x+u)}\right)^2 = y'^2 + w'^2 + 2y'w' + 5y'^2w'^2 + 2y'^3w' + 3y'^4w'^2 \dots, \quad (26a)$

$$\frac{d^{2}(y+w)}{d(x+u)^{2}} = \frac{d}{dx} \left(\frac{d(y+w)}{d(x+u)} \right) \quad \frac{dx}{d(x+u)} =$$

$$= y'' + w'' + 3 y' y'' w' + 4 y' w' w'' + y'^{2} w'' + 2 y'' w'^{2} +$$

$$+ 6 y'^{2} y'' w'^{2} + 4 y'^{3} w' w''.$$
(26b)

Aus Gl. (25) folgt mit den Gl. (26a), (26b)

$$\frac{d(\varphi + \Delta \varphi)}{d(x+u)} = y'' - y'^2 y'' + y'^4 y'' - y'^6 y'' + w'' + y' y'' w + (27) + 2 y' w' w'' + y'' w'^2 - y'^2 y'' w'^2 - y'^3 y'' w' + \dots,$$

264

$$\left(\frac{d(\varphi + \Delta \varphi)}{d(x+u)}\right)^{2} = y''^{2} - 2 y'^{2} y''^{2} + 3 y'^{4} y''^{2} - 4 y'^{6} y''^{2} + w''^{2} + 2 y'' w'' + 2 y' y'' w' + 6 y' y'' w' w'' + 2 y''^{2} w'^{2} - 2 y'^{2} y'' w''$$

$$(27a)$$

und schließlich

$$\int_{a_{1}+a_{2}} \left(\frac{d\left(\varphi+\Delta\varphi\right)}{d\left(x+u\right)}\right)^{2} d\left(x+u\right) = \int_{2a} \left\{y^{\prime\prime 2}-2\ y^{\prime 2}\ y^{\prime\prime 2}+3\ y^{\prime 4}\ y^{\prime\prime 2}-2 \\ -4\ y^{\prime 6}\ y^{\prime\prime 2}+w^{\prime\prime 2}+2\ y^{\prime\prime}w^{\prime\prime}+4\ y^{\prime}\ y^{\prime\prime}w^{\prime}w^{\prime\prime}+\frac{3}{2}\ y^{\prime\prime 2}\ w^{\prime 2}-2\ y^{\prime 2}\ y^{\prime\prime}w^{\prime\prime}\right\}dx.$$
(28)

Nun liefern beide Stabfelder zu den Integralen über 2 y'' w'' und $2 y'^2 y'' w''$ gleich große, aber entgegengesetzt bezeichnete Beiträge, die sich aufheben; damit entsteht aus Gl. (28)

$$\int_{a_{1}+a_{2}} \left(\frac{d \left(\varphi + \Delta \varphi\right)}{d \left(x+u\right)} \right)^{2} d \left(x+u\right) = 2 \int_{0}^{a} \left\{ y''^{2} - 2 y'^{2} y''^{2} + 3 y'^{4} y''^{2} - (28a) -4 y'^{6} y''^{2} + w''^{2} + 4 y' y'' w' w'' + \frac{3}{2} y''^{2} w'^{2} \right\} dx.$$

Mit den Gl. (22) und (28a) erhält man aus Gl. (20)

$$\delta A_i = EJ \int_0^a \left(w''^2 + 4 \, y' \, y'' \, w' \, w'' + \frac{3}{2} \, y''^2 \, w'^2 \dots \right) dx. \tag{29}$$

Mit Hilfe der Gl. (19) und (29) kann die Knickbedingung Gl. (14) geschrieben werden

$$S \int_{0}^{a} w^{\prime 2} dx = E J \int_{0}^{a} \left(w^{\prime \prime 2} + 4 y^{\prime} y^{\prime \prime} w^{\prime} w^{\prime \prime} + \frac{3}{2} y^{\prime \prime 2} w^{\prime 2} \dots \right) dx.$$
 (30)

Setzt man die aus den Gl. (3) und (13) sich ergebenden Ableitungen von y und w in die Gl. (30) ein und führt man die Integrationen durch, so entsteht

$$S = S_E \left\{ 1 + \frac{1}{2} C_1 C_2 \frac{\alpha^3 a \left(\frac{11}{2} - 3 \frac{\alpha^2 a^2}{\pi^2}\right)}{\pi^2 - \alpha^2 a^2} \left(1 - \cos 2 \alpha a\right) + \frac{3 \alpha^4 a^2}{4 \pi^2} \left(C_1^2 + C_2^2\right) + \frac{7}{2} \cdot \frac{1}{\pi^2} \left(\frac{p a}{S}\right)^2 - \frac{1}{2} \left(\frac{p$$

$$-\frac{\alpha^{3}a}{4} \frac{\frac{11}{2} - 3\frac{\alpha^{2}a^{2}}{\pi^{2} - \alpha^{2}a^{2}}}{\pi^{2} - \alpha^{2}a^{2}} (C_{1}^{2} - C_{2}^{2})\sin 2\alpha a + \\ + \frac{8\alpha a}{4\pi^{2} - \alpha^{2}a^{2}} \left[\left(\frac{A}{S} C_{1}\alpha - \frac{p}{S} C_{2} \right) \sin \alpha a - \\ - \left(\frac{A}{S} C_{2}\alpha + \frac{p}{S} C_{1} \right) (1 - \cos \alpha a) \right] - \\ - \frac{8\alpha^{2}a^{2}}{4\pi^{2} - \alpha^{2}a^{2}} \frac{p}{S} (C_{1}\sin \alpha a + C_{2}\cos \alpha a) - \\ - \frac{48\pi^{4} - 20\alpha^{2}a^{2}\pi^{2} + 6\alpha^{4}a^{4}}{\pi^{2} - \alpha^{2}a^{2})^{2}} \cdot \frac{p}{S} \alpha a [C_{1}(1 - \cos \alpha a) + C_{2}\sin \alpha a] \right\},$$

wobei

$$S_E = \frac{\pi^2 E J}{a^2} \tag{32}$$

und die Konstanten C_1 , C_2 und der Auflagerdruck A durch die Gl. (6) bestimmt sind. Die Gl. (31) besitzt die Form

 $S = S_E(1 + p^2 f(S)),$

so daß zu gewählten Werten S die zugehörigen Werte p unmittelbar gerechnet werden können.

Die Gl. (31) liefert zu p = 0, wie es sein muß, die Knicklast $S = S_E$; für p > 0 aber sind die zugehörigen S immer größer als S_E und die Querbelastung wirkt daher stabilisierend! Wie die Auswertung der Gl. (31) für praktische Anwendungsfälle des Stahlbaues zeigt, müßte aber die Querbelastung verhältnismäßig stark sein, wenn die zugehörige Knicklast S wesentlich über S_E ansteigen soll; unter solchen Querlasten kann aber der Stab nicht mehr an die Stabilitätsgrenze gelangen, da er schon früher in der symmetrischen Verformung sein Tragvermögen durch Überwindung seines inneren Widerstandes verliert. Die Knickgrenze kann nur von Stäben mit verhältnismäßig kleiner Querlast erreicht werden und die entsprechenden Knicklasten sind dann nur wenig größer als S_E , so daß der stabilisierende Einfluß der Querbelastung praktisch bedeutungslos bleibt.

Für diese Fälle geringer Verschiedenheit zwischen S und S_E kann die Knickbedingung Gl. (31) noch wesentlich vereinfacht werden: es ist dann $\alpha a \doteq \pi$, sin $\alpha a \doteq 0$, cos $\alpha a \doteq -1$; ferner wird

$$\frac{\sin \alpha a}{\pi - \alpha a} \doteq 1, \quad \frac{1 - \cos 2 \alpha a}{\pi^2 - \alpha^2 a^2} = \frac{1}{2} \frac{\sin \alpha a}{\pi - \alpha a} \quad \frac{\sin \alpha a}{\pi + \alpha a} \doteq 0,$$
$$\frac{\sin 2 \alpha a}{\pi^2 - \alpha^2 a^2} = 2 \frac{\sin \alpha a}{\pi - \alpha a} \quad \frac{\cos \alpha a}{\pi + \alpha a} \doteq -\frac{1}{\pi} \quad \text{usw. Die Gl. (6) ergeben}$$

$$C_{1} = \left(\frac{p a}{S}\right) \frac{a \left(\pi^{2} + 4\right)}{2 \pi^{3}} \qquad C_{2} = \left(\frac{p a}{S}\right) \frac{a}{\pi^{2}}, \quad \frac{A}{S} = \left(\frac{p a}{S}\right) \frac{\pi^{2} - 4}{2 \pi^{2}}$$

Damit erhält man aus Gl. (31)

$$S = S_E \left\{ 1 + \left(\frac{p a}{S}\right)^2 \left(\frac{11}{32} - \frac{5}{72} \frac{1}{\pi^2} - \frac{173}{18} \frac{1}{\pi^4}\right) \right\} \text{ oder}$$
$$S = S_E \left\{ 1 + 0.238 \left(\frac{p a}{S}\right)^2 \right\}, \tag{33}$$

gültig bei geringer Verschiedenheit von S und S_E .

Zahlenbeispiel:

Der Querschnitt des Stabes bestehe aus 2 [12 (Fig. 4) mit $F = 34 \text{ cm}^2$, $J = 728 \text{ cm}^4$, Widerstandsmoment $W = 121 \cdot 4 \text{ cm}^3$, Trägheitshalbmesser $i = 4 \cdot 62 \text{ cm}$. Die Feldweiten betragen

a = 600 cm. Fließgrenze des Werkstoffes $o_F = 2 \cdot 40 \text{ } t/\text{cm}^2$, Dehnmaß $E = 2100 \text{ } t/\text{cm}^2$. Wir nehmen an, das Hooksche Gesetz bleibe bis zur Fließgrenze in Geltung. Aus Gl. (32) ergibt sich $S_E = 41 \cdot 912 \text{ } t$. Die Auswertung der Gl. (31) und (33) führt zu. folgenden Ergebnissen:

S = 43.0 t	zugehörig	p = 2.30 t/m,
$42 \cdot 1 t$		0.972 t/m;
S = 42.1 t	zugehörig	p = 0.963 t/m
$42 \cdot 0 t$	0 0	0.617 t/m,
41.95 t		0.431 t/m,
$41 \cdot 92 t$		0.198 t/m,
41 · 918 t		0.171 t/m,
$41 \cdot 912 t$		0 t/m.
	$S = 43 \cdot 0 t \\ 42 \cdot 1 t \\ S = 42 \cdot 1 t \\ 42 \cdot 0 t \\ 41 \cdot 95 t \\ 41 \cdot 92 t \\ 41 \cdot 918 t \\ 41 \cdot 912 t \end{cases}$	$S = 43 \cdot 0 t \text{zugehörig}$ $42 \cdot 1 t$ $S = 42 \cdot 1 t \text{zugehörig}$ $42 \cdot 0 t$ $41 \cdot 95 t$ $41 \cdot 92 t$ $41 \cdot 918 t$ $41 \cdot 912 t$

Tatsächlich kann aber die Knicklast S über 41.92t nicht ansteigen, da unter den hierzu erforderlichen Querlasten der Stab schon früher in der symmetrischen Verformung sein Tragvermögen durch Überwindung seines inneren Widerstandes verliert. Unter der Querlast p = 1.04 t/m versagt der Stab bereits bei S = 0; bei der Ermittlung dieser Traglast p wurde die "Selbsthilfe" des elastisch plastischen Werkstoffes bis zur theoretischen Höchstgrenze in Rechnung gestellt.

b) Die Knickbedingung Gl. (31) wurde auf Grund der Annahme entwickelt, daß an der Stabilitätsgrenze neben der symmetrischen Gleichgewichtslage noch eine unendlich benachbarte unsymmetrische Gleichgewichtsfigur besteht, die aus der ersteren durch Überlagerung von Querverschiebungen w gemäß Gl. (13) und von gleichzeitigen Längsverschiebungen u zustande kommt; die letzteren wurden so gewählt, daß der Übergang von der einen zur andern Gleichgewichtslage dehnungsfrei erfolgt. Ich habe nun eine gleichartige Untersuchung mit Hilfe einer unsymmetrischen Nachbarlage durchgeführt, die aus der symmetrischen Verformungslinie durch bloße Überlagerung von Querverschiebungen w nach Gl. (13) hervorgeht. Die äußeren Kräfte leisten keine Arbeit, hingegen wird beim Wechsel der Gleichgewichtslage im Zusammenhange mit der Vergrößerung der Stablänge eine Dehnungsenergie $\delta A'_i$ frei. Die kritischen Lastpaare S, p werden auf Grund der Forderung

$$\delta A_i + \delta A'_i = 0 \tag{34}$$

ermittelt; δA_i bedeutet hierbei den jetzt auftretenden Zuwachs an Biegungsenergie. Drückt man die Energiegrößen durch die Ausbiegungen y und w aus, so entsteht aus Gl. (34)

$$EJ \int_{0}^{a} (w''^{2} - 2 y'' w'^{2} - 2 y'^{2} w''^{2} - 8 y' y'' w' w'') dx - (35) - S \int_{0}^{a} (w'^{2} - \frac{1}{2} y'^{2} w'^{2}) dx = 0.$$

Nach Einsetzen der Werte für y und w nach Gl. (3) und (13) und nach Ausführung der Integrationen erhält man aus Gl. (35) die gesuchte Beziehung zur Ermittlung kritischer Wertepaare S, p. Auf ihre Wiedergabe wird verzichtet; hingegen soll noch die aus dieser Beziehung hervorgehende, der Gl. (33) entsprechende, vereinfachte Knickbedingung mitgeteilt werden. Sie lautet

$$S\left\{1-0.146\left(\frac{p\,a}{S}\right)^{2}\right\} = S_{E}\left\{1+0.159\left(\frac{p\,a}{S}\right)^{2}\right\}.$$
 (35*a*)

Sie gilt wieder nur im Falle geringer Verschiedenheit von Sund S_E und sie liefert gleichartige Ergebnisse wie die Gl. (33); so erhält man für das obige Zahlenbeispiel zu S = 42.1 t als zugeordnete Querlast p = 0.850 t/m [gegenüber 0.963 t/m nach Gl. (33)]. Die Ergebnisse beider Näherungsrechnungen stimmen zahlenmäßig nicht überein; das hängt damit zusammen, daß zur Erfassung des Einflusses der Querbelastung auch Glieder von höherer als zweiter Kleinheitsordnung in Rechnung gestellt werden mußten.

Das Ergebnis dieser beiden, nach dem energetischen Verfahren durchgeführten Näherungsuntersuchungen ist sehr bemerkenswert. Die kritischen Lastpaare S, p wurden hierbei auf Grund der Bedingung $\delta A_a = \delta A_i$, bzw. $\delta A_i + \delta A'_i = 0$ ermittelt. Die verschärfte Forderung, daß beim Wechsel der Gleichgewichtslage die Änderung $\delta A_a - \delta A_i$, bzw. $\delta A_i + \delta A'_i$ der potentiellen Energie des Systems zugleich ein Minimum bilden soll, konnte nicht berücksichtigt werden, da im Hinblick auf den Umfang der erforderlichen Entwicklungen für die Querverschiebungen wnur ein Ansatz mit einem einzigen Freiwerte verwendet wurde.

Zur Überprüfung des Ergebnisses der stabilisierenden Wirkung der Querbelastung wird aber noch die folgende Untersuchung durchgeführt, bei der die kritischen Lastpaare S, p nach erfolgter Integration der Differentialgleichung der Knickbiegelinie aus einer geometrischen Beziehung gewonnen werden. Wir wollen diese Lösungsmethode kurz als Integrationsverfahren bezeichnen.

III. Integrationsverfahren.

a) Die Lasten S, p mögen bereits kritische Werte besitzen, unter welchen neben der symmetrischen Gleichgewichtslage y nach Gl. (3) noch eine unendlich benachbarte unsymmetrische Gleichgewichtsform (Ordinaten y_1 im ersten, y_2 im zweiten Felde) mit den Stützweiten a_1 und a_2 besteht. a_1 und a_2 sind hierbei untereinander sowie auch von der Stützweite a der symmetrischen Gleichgewichtsform unendlich wenig verschieden. In Fig. 5asind beide Gleichgewichtslagen dargestellt. Hinsichtlich des Verhaltens der Querbelastung machen wir zunächst die folgende, von der früheren Untersuchung abweichende Annahme: die Querbelastung p bleibe auch während des Wechsels der Gleichgewichtslagen stets gleichmäßig über die Stabprojektion verteilt (p unveränderlich), so daß die Gesamtlast des kürzeren Feldes 1 um einen unendlich kleinen Betrag kleiner ist als die des Feldes 2: Fig. 5b. Wir legen die unsymmetrische Gleichgewichtslage analytisch fest und zählen hierbei die Abszissen x_1 und x_2 von den Neulagen 0', 2' der Stabendpunkte 0 und 2 aus.

Das Biegungsmoment in einem Querschnitte x_1 des ersten Feldes beträgt

$$M = S y_1 + A x_1 - \frac{1}{2} p x_1^2.$$
 (36)

Die Ausbiegungen werden als klein gegenüber der Feldweite vorausgesetzt, so daß es erlaubt ist, die Biegelinie näherungsweise

$$y_{1}^{\prime\prime} = \frac{1}{EJ} \left(S \cdot y_{1} + A_{1} x_{1} - \frac{1}{2} p x_{1}^{2} \right).$$
(37)

Das Integral dieser Differentialgleichung lautet

$$y = C_1 \sin \alpha x_1 + C_2 \cos \alpha x_1 - \frac{A_1}{S} x_1 + \frac{1}{2} \frac{p}{S} x_1^2 - \frac{p}{\alpha^2 S}, \quad (38)$$

wobei die Hilfsgröße a wieder durch die Gl. (4) bestimmt ist.

Auf gleichem Wege erhält man für die Durchbiegungen des zweiten Feldes

$$y_2 = C_3 \sin \alpha x_2 + C_4 \cos \alpha x_2 - \frac{A_2}{S} x_2 + \frac{1}{2} \frac{p}{S} x_2^2 - \frac{p}{\alpha^2 S}.$$
 (38*a*)

Zur Bestimmung der vier Integrationskonstanten C_1 bis C_4 und der Auflagerdrücke A_1 , A_2 stehen zunächst fünf Randbedingungen zur Verfügung:

$$y_{1} = 0 \text{ für } x_{1} = 0 \text{ und } x_{1} = a_{1},$$

$$y_{2} = 0 \text{ für } x_{2} = 0 \text{ und } x_{2} = a_{2},$$

$$y'_{1} + y'_{2} = 0 \text{ für } x_{1} = a_{1}, x_{2} = a_{2}.$$

$$(39)$$

Außerdem sind die beiden Auflagerdrücke A_1 und A_2 durch die Gleichgewichtsbedingung

$$A_{1} a_{1} - \frac{1}{2} p a_{1}^{2} = A_{2} a_{2} - \frac{1}{2} p a_{2}^{2}$$
(40)

verknüpft. Die Auswertung der Gl. (39) und (40) führt mit Hilfe der Gl. (38), (38*a*) zu folgenden Ergebnissen:

$$C_{1} = \frac{p}{\alpha^{2}S} \cdot \frac{1}{N \sin \alpha a_{1}} \left[(\alpha a_{1} + \alpha a_{2}) \left(1 - \cos \alpha a_{1} + \frac{1}{2} \alpha a_{1} \cdot \alpha a_{2} \right) - - \alpha a_{1} \cdot \alpha a_{2} \left(\sin \alpha a_{1} + \frac{1}{\sin \alpha a_{2}} - \cos \alpha a_{1} \operatorname{ctg} a_{2} \right) \right],$$

$$C_{2} = \frac{p}{\alpha^{2}S},$$

$$A_{1} = \frac{p}{\alpha} \cdot \frac{1}{N} \left[\frac{1}{2} (\alpha a_{1} + \alpha a_{2})^{2} - \frac{1}{2} \alpha^{2} a_{1}^{2} \cdot \alpha a_{2} (\operatorname{ctg} \alpha a_{1} + \operatorname{ctg} \alpha a_{2}) - - \alpha a_{2} \left(\frac{1 - \cos \alpha a_{1}}{\sin \alpha a_{1}} + \frac{1 - \cos \alpha a_{2}}{\sin \alpha a_{2}} \right) \right],$$
(41)

mit der Hilfsgröße

$$N = (\alpha a_1 + \alpha a_2) - \alpha a_1 \cdot \alpha a_2 (\operatorname{ctg} \alpha a_1 + \operatorname{ctg} \alpha a_2).$$
 (41 a)

Die Werte für C_3 , C_4 und A_2 gehen aus jenen für C_1 , C_2 und A_1 durch Vertauschung der Zeiger 1 und 2 hervor.

Bezeichnen wir die Länge des durch die Axialkraft S bereits elastisch zusammengedrückten Stabes mit 2b, so können die Feldweiten a_1 und a_2 wie folgt ausgedrückt werden:

$$a_1 = b - \Delta_1, \quad a_2 = b - \Delta_2; \tag{42}$$

hierbei ist

$$\Delta_1 = \frac{1}{2} \int_0^{a_1} y_1'^2 dx, \quad \Delta_2 = \frac{1}{2} \int_0^{a_2} y_2'^2 dx.$$
(43)

Die beiden Integrale können nach Einsetzen der aus den Gl. (38), (38*a*) sich ergebenden Ableitungen von y ausgerechnet werden. Für Δ_1 erhält man

$$\Delta_{1} = \frac{1}{2} \int_{0}^{a_{1}} \left[C_{1}^{2} \alpha^{2} \cos^{2} \alpha x_{1} + C_{2}^{2} \alpha^{2} \sin^{2} \alpha x_{1} + \frac{A_{1}^{2}}{S^{2}} + \frac{p^{2}}{S^{2}} x_{1}^{2} - C_{1} C_{2} x_{1}^{2} \sin 2 \alpha x_{1} - 2 C_{1} \frac{A_{1}}{S} \alpha \cos \alpha x_{1} + 2 C_{1} \frac{p}{S} \alpha x_{1} \cos \alpha x_{1} + 2 C_{2} \frac{A_{1}}{S} \alpha \sin \alpha x_{1} - 2 C_{2} \frac{p}{S} \alpha x_{1} \sin \alpha x_{1} - \frac{A_{1}p}{S^{2}} x_{1} \right] dx_{1}$$

und weiterhin

$$\Delta_{1} = \frac{1}{4} \alpha C_{1}^{2} \left(\alpha a_{1} + \frac{1}{2} \sin 2 \alpha a_{1} \right) + \frac{1}{4} \alpha C_{2}^{2} \left(\alpha a_{1} - \frac{1}{2} \sin 2 \alpha a_{1} \right) + \\ + \frac{1}{2} \alpha a_{1} \frac{A_{1}^{2}}{\alpha S^{2}} + \frac{(\alpha a_{1})^{3}}{6} \frac{p^{2}}{\alpha^{3} S^{2}} - \frac{1}{4} \alpha C_{1} C_{2} (1 - \cos 2 \alpha a_{1}) + \\ + \frac{1}{2} p \alpha a_{1} \frac{A_{1}}{\alpha^{2} S^{2}} - C_{1} \frac{A_{1}}{S} \sin \alpha a_{1} + C_{1} \frac{p}{\alpha S} (\alpha a_{1} \sin \alpha a_{1} - 1 + (44) \\ + \cos \alpha a_{1}) + C_{2} \frac{A_{1}}{S} (1 - \cos \alpha a_{1}) + C_{2} \frac{p}{\alpha S} (\alpha a_{1} \cos \alpha a_{1} - \sin \alpha a_{1}).$$

Ersetzt man in Gl. (44) die Größen a_1 , A_1 , C_1 und C_2 der Reihe nach durch a_2 , A_2 , C_3 und C_4 , so entsteht der bezügliche Ausdruck für Δ_2 .

Wir wollen uns damit begnügen, die Ergebnisse des Energieverfahrens nur für den praktisch in Betracht kommenden Fall geringer Verschiedenheit von S und S_E zu überprüfen. Wenn S von S_E wenig abweicht, dann werden auch die Größen αa_1 und αa_2 von π wenig verschieden sein; a_1 und a_2 selbst aber können sich nur unendlich wenig unterscheiden, da ja die unsymmetrische Gleichgewichtsfigur der symmetrischen unendlich benachbart ist. Demgemäß bilden wir die Ansätze

$$\alpha a_1 = \pi - \varkappa - \mu, \qquad \alpha a_2 = \pi - \varkappa + \mu, \qquad (45)$$

worin \varkappa eine endlich kleine Größe (die aber auch verschwindend klein werden kann) und μ eine stets unendlich kleine Größe bedeuten. Es ist dann

$$\sin \alpha a_1 = \sin (\alpha + \mu) \stackrel{\text{in}}{=} \alpha + \mu, \quad \sin \alpha a_2 \stackrel{\text{in}}{=} \alpha - \mu,$$

$$\cos \alpha a_1 \stackrel{\text{in}}{=} \cos \alpha a_2 \stackrel{\text{in}}{=} -1 \text{ usw.}$$
(46)

und man erhält aus den Gl. (41) für C_1 und A_1 :

$$C_{1} = \frac{p}{\alpha^{2}S} \cdot \frac{\frac{1}{2} \left[(\pi - \varkappa)^{2} - \mu^{2} \right] (\pi - 2\varkappa - \mu) + 2 (\pi - \varkappa)}{\left[(\pi - \varkappa)^{2} - \mu^{2} \right] \varkappa + (\pi - \varkappa) (\varkappa^{2} - \mu^{2})} (\varkappa - \mu) }{\left[(\pi - \varkappa)^{2} - \mu^{2} \right] \varkappa + (\pi - \varkappa) \varkappa \left[\frac{1}{2} (\pi - \varkappa - \mu)^{2} - 2 \right]} .$$

$$\left. \right\}$$

$$(47)$$

Wir wollen zunächst den Fall $\varkappa\to 0$ ausscheiden und \varkappa als endlich kleine Größe betrachten, so daß

$$\kappa \gg \mu$$
 (48)

Die Ausdrücke für C_1 und A_1 nach Gl. (47) können dann unter Anwendung binomischer Reihenentwicklungen weitgehend vereinfacht werden:

Mit den Gl. (49) und unter Anwendung der Gl. (46) erhält man aus Gl. (44):

$$\begin{split} \Delta_{1} &= \frac{1}{2} - \frac{p^{2}}{\varkappa^{3} S^{2}} \left[\left(\frac{5}{24} \pi^{3} - \frac{\pi}{2} - \frac{10}{\pi} \right) - \left(\frac{\pi^{3}}{4} - \frac{4}{\pi} \right) \frac{\mu}{\varkappa} - \\ &- 3 \left(\frac{\pi^{2}}{4} - 1 \right) \varkappa + \left(\frac{3}{4} \pi^{2} + 1 + \frac{4}{\pi^{2}} \right) \mu \right] \text{ oder} \end{split}$$

$$\alpha \Delta_{1} = \left(\frac{p}{\alpha S}\right)^{2} \left(0.8528 - 3.2391 \,\frac{\mu}{\varkappa} - 2.2010 \,\varkappa + 4.6064 \,\mu\right); \tag{50}$$

Durch Wechsel des Vorzeichens von μ folgt hieraus

$$\alpha \Delta_2 = {\binom{p}{\alpha S}}^2 \left(0.8528 + 3.2391 \frac{\mu}{z} - 2.2010 \,z - 4.6064 \,\mu \right). \tag{50a}$$

Durch Subtraktion beider Gleichungen entsteht

$$\alpha \left(\Delta_1 - \Delta_2 \right) = -2 \mu \left(\frac{p}{\alpha S} \right)^2 \left(3 \cdot 2391 \frac{1}{\alpha} - 4 \cdot 6064 \right). \tag{51}$$

Aus Gl. (42) folgt

also

$$a_1 + \Delta_1 = a_2 + \Delta_2,$$

$$\alpha a_1 + \alpha \Delta_1 = \alpha a_2 + \alpha \Delta_2,$$

und weiterhin, mittels Gl. (45),

$$\pi - \varkappa - \mu + \alpha \Delta_1 = \pi - \varkappa + \mu + \alpha \Delta_1$$
$$\alpha (\Delta_1 - \Delta_2) = 2 \mu.$$
(52)

oder

Diesen Wert in Gl. (51) eingesetzt und durch µ. gekürzt, entsteht

$$\varkappa = -\frac{3 \cdot 2391 \left(\frac{p}{\sigma S}\right)^2}{1 - 4 \cdot 6064 \left(\frac{p}{\sigma S}\right)^2}.$$
(53)

Diese Beziehung Gl. (53) muß erfüllt sein, wenn ein von Null verschiedener Wert μ bestehen, also eine unsymmetrische Gleichgewichtslage des querbelasteten Stabes möglich sein soll. Aus dieser Gleichung ist bereits zu erkennen, daß die endlich kleine Größe \varkappa ein negatives Vorzeichen erhalten wird, also $\alpha a > \pi$ sein muß! Somit wird auch diese Untersuchung zu dem Ergebnis einer stabilisierenden Wirkung der Querbelastung führen.

Die Gl. (53) enthält zwei Unbekannte: \varkappa und $\frac{p}{\alpha S}$; zu ihrer Berechnung ist noch eine weitere Beziehung notwendig. Wir erhalten sie durch Addition der Gl. (50) und (50*a*):

$$\alpha \left(\Delta_1 + \Delta_2 \right) = 2 \left(\frac{p}{\alpha S} \right)^2 \left(0.8528 - 2.2010 \, \varkappa \right). \tag{54}$$

Aus den Gl. (42) folgt nun

 $\alpha\left(\Delta_1\!+\!\Delta_2\right)=2\,\alpha\,b\!-\!\alpha\left(a_1\!+\!a_2\right),$

und hieraus, mit Gl. (47),

$$\alpha \left(\Delta_1 + \Delta_2 \right) = 2 \left[\alpha b - (\pi - \kappa) \right]. \tag{55}$$

Eingesetzt in Gl. (54) entsteht

$$\alpha b - \pi + \varkappa = \left(\frac{p}{\alpha S}\right)^2 (0.8528 - 2.2010 \varkappa). \tag{56}$$

Aus Gl. (56) erhält man mit Einführung des Wertes z nach Gl. (53)

eine quadratische Gleichung nach $\left(\frac{p}{\alpha S}\right)^2$ mit der Lösung $\left(\frac{p}{\alpha S}\right)^2 = [0.6392 + 0.7196 (\alpha b - \pi)] \cdot \left[-1 + \sqrt{1 + \frac{0.3124 (\alpha b - \pi)}{0.6392^2 + 2.0.6392 \cdot 0.7196 (\alpha b - \pi)}}\right].$ (57)

Da das zweite Glied unter der Wurzel klein gegenüber 1 ist, kann man den Wurzelausdruck in eine binomische Reihe entwickeln und erhält so, unter Vernachlässigung der Glieder höherer Ordnung,

$$\left(\frac{p}{\alpha S}\right)^2 = 0.2444 \,(\alpha b - \pi) - 0.2751 \,(\alpha b - \pi)^2$$
 (58)

als Knickbedingung für den querbelasteten Druckstab.

Wir haben noch den Fall x = 0 zu untersuchen. Die zugehörigen Werte C_1 und A_1 ergeben sich aus den Gl. (47) zu

$$C_{1} = \frac{p}{\alpha^{2}S} \left[\frac{1}{\mu} \left(2 + \frac{\pi^{2}}{2} \right) - \frac{\pi}{2} - \frac{\mu}{2} \right],$$

$$A_{1} = \frac{p}{\alpha} \pi.$$

$$(59)$$

Damit erhalten wir aus Gl. (44), wenn die Glieder mit μ^0 und μ^{+1} gegenüber jenen mit μ^{-1} und μ^{-2} vernachlässigt werden:

$$\alpha \Delta_{1} = \left(\frac{p}{\alpha S}\right)^{2} \left[\frac{\pi}{\mu^{2}} \left(1 + \frac{\pi^{2}}{2} + \frac{\pi^{4}}{16}\right) - \frac{1}{\mu} \left(4 + \frac{3}{2}\pi^{2} + \frac{\pi^{4}}{8}\right) \dots \right]$$
(60)

Durch Änderung des Vorzeichens von µ ergibt sich hieraus

$$\alpha \Delta_2 = \left(\frac{p}{\alpha S}\right)^2 \left[\frac{\pi}{\mu^2} \left(1 + \frac{\pi^2}{2} + \frac{\pi^4}{16}\right) + \frac{1}{\mu} \left(4 + \frac{3}{2} \pi^2 + \frac{\pi^4}{8}\right) \dots \right] \quad (60 a)$$

Bilden wir aus diesen Gleichungen die Differenz $\alpha \Delta_1 - \alpha \Delta_2$ und setzen wir sie in die Gl. (52) ein, so entsteht

$$\mu^{2} = --\left(\frac{p}{\alpha S}\right)^{2} \left(4 + \frac{3}{2}\pi^{2} + \frac{\pi^{4}}{8}\right), \tag{61}$$

und es ist zu ersehen, daß es bei $\varkappa = 0$ (und $p \pm 0$) keinen reellen Wert μ und daher auch keine Stabilitätsgrenze gibt. Für den querbelasteten Druckstab ist somit der Fall $\varkappa = 0$ bedeutungslos; die Knickbedingung ist bei geringer Verschiedenheit von S und S_E allgemein durch die Gl. (58) gegeben.

Anwendung auf das früher behandelte Zahlenbeispiel: Es soll die Querbelastung p ermittelt werden, unter der die Knicklast von $S_E = 41.912 t$ (bei p = 0) auf S = 42.1 t ansteigt. Mit den gegebenen Werten E, J und mit S = 42.1 t wird nach Gl. (2) ... $\alpha = 0.00524766 \ cm^{-1}$, und weiterhin, mit $b \doteq 600 \ cm$, $\alpha b - \pi = 0.007003$; damit folgt aus Gl. (58):

$$\left(\frac{p}{\alpha S}\right)^2 = 0.001698$$
, und $p = 0.009102 \ t/cm = 0.910 \ t/m$.

Die Zulässigkeit der bei geringer Verschiedenheit von S und S_E durchgeführten Vereinfachungen kann nachgeprüft werden, indem man mittels der errechneten Hilfsgrößen \varkappa und μ die Größen αa_1 und αa_2 nach Gl. (45) bestimmt und mit diesen, sowie mit den errechneten kritischen Lastpaaren S, p unter Benützung der Gl. (41) die Größen Δ_1 und Δ_2 ermittelt. Es muß dann die geometrische Bedingung $a_1 + \Delta_1 = a_2 + \Delta_2$ erfüllt sein. Im übrigen ist das entwickelte Verfahren bis auf die Anwendung der vereinfachten Differentialgleichung der elastischen Linie und die Vernachlässigung der kleinen Axialkraftunterschiede längs des verformten Stabes strenge gültig. Zufolge dieser Vereinfachungen gelten die Ergebnisse allerdings nur dann, wenn die Durchbiegungen klein gegenüber den Feldweiten sind; diese Voraussetzung ist aber bei den Anwendungsfällen im Bauwesen in der Regel erfüllt.

b) Die Ergebnisse können mit jenen der unter II. durchgeführten Berechnungen nicht unmittelbar verglichen werden, da ein anderes Verhalten der Querbelastung vorausgesetzt wurde. Bei den Untersuchungen II. war angenommen worden, daß die Angriffspunkte der (in der symmetrischen Gleichgewichtslage gleichmäßig über die Stabprojektion verteilten) Querlasten während des Wechsels der Gleichgewichtslage mit dem Stabe in fester Verbindung bleiben. Die Gesamtquerlast ist dann für beide Stabfelder stets gleich groß; die Belastung p je Längeneinheit der Stabprojektion ist aber in der unsymmetrischen Gleichgewichtsform verschwindend wenig veränderlich. Wir wollen den Durchschnittswert im Felde a_1 mit p_1 , im Felde a_2 mit p_2 bezeichnen. Annahmegemäß ist dann

$$a_1 p_1 = a_2 p_2 = a p = P, (62)$$

wenn sich a und p wieder auf die symmetrische Gleichgewichts-

lage an der Stabilitätsgrenze beziehen; P bedeutet die Gesamtquerlast eines Feldes.

Die Beibehaltung der dem Verfahren II. zugrunde gelegten Annahmen hinsichtlich des Verhaltens der Querbelastung würde beim Integrationsverfahren sehr umständliche Berechnungen erfordern. Um auf einfachem Wege zu Ergebnissen zu gelangen, die mit jenen des Verfahrens II. verglichen werden können, wird die Querbelastung jedes Feldes gleichmäßig über die Stabprojektion verteilt, und zwar gleich den Durchschnittswerten p_1 und p_2 angenommen: Fig. 5*c*. Die Gl. (38), (38*a*) und (40) bleiben wieder in Geltung, nur hat man *p* durch p_1 bzw. p_2 zu ersetzen. Die Auflösung der Gl. (40) führt mit der Hilfsgröße *P* nach Gl. (62) zu folgenden Ergebnissen:

$$C_{1} = \frac{P}{\alpha S} \frac{1}{N \sin \alpha a_{1}} \left\{ \alpha a_{1} \alpha a_{2} - \left[\alpha a_{2} \left(\operatorname{ctg} \alpha a_{1} + \operatorname{ctg} \alpha a_{2} \right) - 1 - \right) - \left(\frac{\alpha a_{2}}{\alpha a_{1}} \right) \left(1 - \cos \alpha a_{1} \right) - \alpha a_{2} \frac{1 - \cos \alpha a_{1}}{\sin \alpha a_{1}} - \alpha a_{1} \frac{1 - \cos \alpha a_{2}}{\sin \alpha a_{2}} \right) \right\},$$

$$C_{2} = \frac{P}{\alpha S} \frac{1}{\alpha a_{1}}$$

$$A_{1} = \frac{P}{N} \left\{ \frac{1}{2} \alpha a_{1} + \frac{3}{2} \alpha a_{2} - \frac{1}{2} \alpha a_{1} \alpha a_{2} \left(\operatorname{ctg} \alpha a_{1} + \operatorname{ctg} \alpha a_{2} \right) - \left(- \frac{\alpha a_{2}}{\alpha a_{1}} \cdot \frac{1 - \cos \alpha a_{1}}{\sin \alpha a_{1}} - \frac{1 - \cos \alpha a_{2}}{\sin \alpha a_{2}} \right) \right\},$$

$$(63)$$

die Hilfsgröße N ist durch die Gl. (41a) bestimmt.

Wieder auf den praktisch allein in Betracht kommenden Fall $S \doteq S_E$ und $\varkappa \gg \mu$ übergehend, erhält man aus den Gl. (63), mit Hilfe der Gl. (46),

$$C_{1} = \frac{P}{\alpha S} \left[\left(\frac{1}{2} + \frac{2}{\pi^{2}} \right) - \frac{1}{2} \frac{\mu}{\varkappa} - \frac{\varkappa}{\pi} \left(\frac{1}{2} - \frac{2}{\pi^{2}} \right) + \frac{\mu}{\pi} \left(\frac{1}{2} + \frac{2}{\pi^{2}} \right) \right],$$

$$C_{2} = \frac{P}{\alpha S} \frac{1}{\pi} \left(1 + \frac{\varkappa}{\pi} + \frac{\mu}{\pi} \right),$$

$$A_{1} = P \left[\left(\frac{1}{2} - \frac{2}{\pi^{2}} \right) + \frac{\varkappa}{\pi} \left(\frac{1}{2} - \frac{2}{\pi^{2}} \right) - \frac{2\mu}{\pi^{3}} \right]$$
(64)

Damit ergibt sich aus Gl. (44)

$$\Delta_{1} = \frac{1}{2} \alpha \left(\frac{P}{\alpha S}\right)^{2} \left[\left(\frac{5}{24} \pi - \frac{1}{2\pi} - \frac{10}{\pi^{3}}\right) - \left(\frac{\pi}{4} - \frac{1}{\pi}\right) \frac{\mu}{\varkappa} - \left(\frac{1}{12} - \frac{1}{\pi^{2}} + \frac{20}{\pi^{4}}\right) \varkappa + \left(\frac{2}{3} - \frac{20}{\pi^{4}}\right) \mu \right]$$

oaei

$$\alpha \Delta_{1} = \left(\frac{P}{S}\right)^{2} \left(0.08642 - 0.23354 \frac{\mu}{\varkappa} - 0.09367 \varkappa + 0.23067 \mu\right), \quad (65)$$

und durch Änderung des Vorzeichens von µ

$$\alpha \Delta_2 = \left(\frac{P}{S}\right)^2 \left(0.08642 + 0.23354 \,\frac{\mu}{\kappa} - 0.09367 \,\kappa - 0.23067 \,\mu\right). \tag{65a}$$

Aus Gl. (52) folgt dann

$$\kappa = -\frac{0 \cdot 23354 \left(\frac{P}{S}\right)^2}{1 - 0 \cdot 23067 \left(\frac{P}{S}\right)^2} \,. \tag{66}$$

Die Gl. (55) ergibt mit den Gl. (65), (65a)

$$(\alpha b - \pi + \varkappa) = \left(\frac{P}{S}\right)^2 (0.08642 - 0.09367\varkappa);$$

den Wert für z aus Gl. (66) eingesetzt, entsteht die quadratische Gleichung nach $\left(\frac{P}{S}\right)^2$

$$0.00194 \left(\frac{P}{S}\right)^4 + \left[0.31996 + 0.23067 \left(\alpha b - \pi\right)\right] \left(\frac{P}{S}\right)^2 - \left(\alpha b - \pi\right) = 0.$$

Aus dieser ergibt sich genügend genau

$$\left(\frac{P}{S}\right)^{2} \doteq \frac{(\alpha b - \pi)}{0.31996 + 0.23067 (\alpha b - \pi)},$$

und weiterhin

$$\left(\frac{P}{S}\right)^2 \doteq 3 \cdot 1254 \,(\alpha b - \pi) - 2 \cdot 2845 \,(\alpha b - \pi)^2$$
 (67)

als Knickbedingung des querbelasteten Stabes, gültig bei geringer Verschiedenheit von S und S_E .

278

Anwendung auf das früher behandelte Zahlenbeispiel: Es soll wieder die Querbelastung p ermittelt werden, unter der die Knicklast von $S_E = 41.912 t$ (bei p = 0) auf S = 42.1 t ansteigt. Mit $\alpha b - \pi = 0.007003$ folgt aus Gl. (67): $\left(\frac{P}{S}\right)^2 = 0.021775$, $\frac{P}{S} = 0.14757$, P = 6.213 t, p = 1.035 t/m. Nach dem energe-

tischen Verfahren II. ist der etwas günstigere Wert von 0.963 t/merhalten worden; dieses Ergebnis beweist wieder die Leistungsfähigkeit der Energiemethode. Der Vergleich mit dem unter anderer Voraussetzung nach dem Integrationsverfahren errechneten Wert von p = 0.910 t/m läßt erkennen, daß im vorliegenden Falle die Art des Verhaltens der Querbelastung während des Wechsels der Gleichgewichtslage die Ergebnisse verhältnismäßig wenig beeinflußt.

ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: <u>Sitzungsberichte der Akademie der Wissenschaften mathematisch-</u> naturwissenschaftliche Klasse

Jahr/Year: 1941

Band/Volume: 150_2a

Autor(en)/Author(s): Girkmann Karl

Artikel/Article: <u>Gleichgewichtsverzweigung an einem querbelasteten Druckstabe. 257-279</u>